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Background

Reinforcement Learning (RL)

Figure 1: Markov Decision Process (MDP)

An agent interacts with environment using its policy π(a|s).

π(a|s): mapping from state to action S → A

Stochastic policy: π(a|s) = P[At = a|St = s]

By interaction, a trajectory τ = (S0,A0,R1,S1,A1,R2, ...)

Total return random variable G0 = R1 + γR2 + γ2R3 + ...
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Background

Reinforcement Learning (RL)

Figure 2: Random trajectories

Traditional (Risk-neutral) RL: maxπ E[G0]

Risk-averse RL (RARL): optimize f (G0), where f is a risk metric

Risk measures
Measures of variability
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Background

Risk Measures V.S. Measures of Variability

(Focus on) Risk Measures

Value at Risk (VaR) (Chow et al., 2018)

Conditional VaR (CVaR) (Bäuerle and Ott, 2011; Chow and Ghavamzadeh,
2014; Chow et al., 2015; Greenberg et al., 2022; Luo et al., 2024)

Entropic risk measure (Fei et al., 2021; Hau et al., 2023)

Expectile (Rowland et al., 2019; Marzban et al., 2023)

Measures of Variability (under explored)

Variance (Tamar et al., 2012; La and Ghavamzadeh, 2013; Xie et al., 2018;
Bisi et al., 2020; Zhang et al., 2021)

Variance-related: STD (Yang et al., 2021), semi STD (Tamar et al., 2015),
semi Variance (Ma et al., 2022)
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Background

Risk Measures V.S. Measures of Variability

Risk Measures: ρ : X → (−∞,+∞]

(A) Law invariance: if X
d
= Y , then ρ(X ) = ρ(Y ) for all X ,Y ∈ X

(A1) Positive homogeneity: ρ(cX ) = cρ(X ) for all c > 0 and X ∈ X .

(A2) Sub-additivity: ρ(X + Y ) ≤ ρ(X ) + ρ(Y ) for all X ,Y ∈ X .

(B1) Monotonicity: ρ(X ) ≤ ρ(Y ) if X ,Y ∈ X and X ≤ Y P-almost surely.

(B2) Translation invariance: ρ(X − c) = ρ(X )− c for all c ∈ R and X ∈ X .

A risk measure is coherent if it satisfies (A1), (A2), (B1) and (B2) (Artzner
et al., 1999).
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Background

Risk Measures V.S. Measures of Variability

Measures of Variability ν: X → [0,∞].

(C1) Standardization: ν(m) = 0 for all m ∈ R.

(C2) Location invariance: ν(X −m) = ν(X ) for all m ∈ R and X ∈ X .

A measure of variability is coherent if it satisfies (C1), (C2), (A1) Positive
homogeneity and (A2) Sub-additivity (Furman et al., 2017).
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Background

Risk Measures V.S. Measures of Variability

Risk Measures and Measures of Variability are also related.

Rockafellar et al. (2006) demonstrated a one-to-one correspondence between
deviation measures and “strictly expectation bounded risk measures”.

Mean-Semi STD is a coherent risk measure (Tamar et al., 2015).
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Measures of Variability for RARL

Our Contribution

Policy gradient derivation and comparison of 9 measures of variability following
seminal works of David (1998); Rockafellar et al. (2006). 4 metrics have not been
previously studied in RARL.

Variance

Gini Deviation

Mean Deviation

Mean-Median Deviation

Standard Deviation

Inter-Quantile Range

CVaR Deviation

Semi Variance

Semi STD

Problem:
max
πθ

E[G0]− λD[G0] (1)

pdf of X : fX (x ; θ), compute ∇θD[X ]
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Measures of Variability for RARL

Metrics

Gini Deviation

GD[X ] =
1

2
E[|X − X ∗|] (X ∗ is i.i.d. copy of X ) (2)

Representation of variance could be misleading (based on the center of the
underlying distribution) (Gini, 1912).

Share some properties with Variance (Yitzhaki et al., 2003), e.g., consistent
with convex order, represented by ordered statistics.

Variance
V[X ] = E[(X − E[X ])2] = E[X 2]− (E[X ])2

=
1

2
E[(X − X ∗)2] (X ∗ is i.i.d. copy of X )

(3)
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Measures of Variability for RARL

Metrics

Mean Deviation
MD[X ] = E[|X − E[X ]|] (4)

Portfolio management, since the problem can be reduced to a linear
programming problem, instead of a quadratic programming in Variance.

Mean-Median Deviation

MMD[X ] = E[|X −Median(X)|] = min
x∈R

E[|X − x |] (5)

median is the minimum value of the L1 estimate.

alternative to MD, since the median is more robust to outliers and skewed
distributions.

Yudong Luo (HEC Montreal) Variability, Policy Gradient 12 / 21



Measures of Variability for RARL

Metrics

Inter Quantile Range

IQRα[X ] = F−1X (α)− F−1X (1− α), α ∈ [
1

2
, 1) (6)

When α→ 1, IQR recovers the full range of X .

Plays a key role in the construction of a box plot (Spitzer et al., 2014)

CVaR Deviation
CD[X ] = E[X ]− CVaR∨α(X ) (7)

Deviation of the left tail value from the mean

Mean-CVaR criteria is widely used in portfolio management (Yao et al.,
2013) and also RL (Ying et al., 2022) to avoid potential losses.
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Measures of Variability for RARL

Policy Gradient

Gini Deviation: GD[X ] = 1
2E[|X − X ∗|]

Mean-Median Deviation: MMD[X ] = E[|X −Median(X)|] = minx∈R E[|X − x |]

Signed Choquet integral (Wang et al., 2020)

Φ[X ] =

∫ 1

0

F−1X (1− α)d h(α) (8)

Gini Deviation: h(α) = −α2 + α

Mean-Median Deviation: h(α) = min{α, 1− α}
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Measures of Variability for RARL

Policy Gradient (Gini Deviation)

Assume X is continuous, bounded [−b, b], ∂
∂θi

qα(X ; θ), ∂fX (x ;θ)∂θi
/fX (x ; θ)

∇θGD[X ] =

∫ 1

0

(2α− 1)∇θF−1X (α)dα =

∫ 1

0

(2α− 1) ∇θqα(X ; θ) dα. (9)

Gradient of quantile

∇θqα(X ; θ) = −
∫ qα(X ;θ)

−b
∇θfX (x ; θ)dx ·

[
fX
(
qα(X ; θ); θ

)]−1
. (10)

Then

∇θGD[X ] = −Ex∼X

[
∇θ log fX (x ; θ)

(
b + x − 2E[max{X , x}]

)]
. (11)

Unbiased estimator (sample set {xi}ni=1)

∇θGD[X ][n] =
1

n

n∑
i=1

∇θ log fX (xi ; θ)
[ 2

n − 1

∑
j 6=i

max{xj , xi} − (b + xi )
]
. (12)
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Measures of Variability for RARL

Policy Gradient

PG unbiased Require double sampling

CVaRDev × ×
GiniDev X ×
IQR × ×
MeanDev X X
MeanMedianDev × ×
Variance X X
STD X X
Semi Var X X
Semi STD X X

Table 1: Summary of whether policy gradients (PG) are unbiased or require
double sampling for different risk metrics.
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Experiments

Experiment Design

Risk-aversion can be clearly defined and verified.

Figure 3: Experiment domains
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Experiments

Results in LunarLander

Figure 4: Return and risk-averse rate in LunarLander
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Experiments

Key Takeaway

Variance-based (Variance, Semi Variance) unstable due to quadratic term.

STD-based (STD, Semi STD) significantly better than variance-based by
scaling the gradient. Semi STD better than STD due to small gradient
variance.

Gini Deviation, CVaR Deviation consistent performance across different
domains.

Mean Deviation, Semi STD also competitive, worse than GD and CD in
some domain.
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Thank you!
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