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Problem Definition

Player Evaluation:

• Definition: Evaluate the contribution of players in the game (drafting, coaching, trading)

• Access to a dataset, e.g., game recordings

• Mainstream method: quantify player's action impact

• Example:

1) Supervised Learning: give a label of 1 to scoring a goal, predict the scoring probability 

of other actions

2) Reinforcement Learning: naturally has an action-value function, named Q value. Design 

the reward as 1 to scoring a goal, 0 otherwise
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Problem Definition

Player Evaluation:

• Definition: Evaluate the contribution of players in the game (drafting, coaching, trading)

• Access to a dataset, e.g., game recordings

• Mainstream method: quantify action impacts.

• Challenges:

1) Previous methods are expectation-based, which cannot differentiate the risk-seeking

actions from the risk-averse actions.

2) How to distinguish these actions and assign proper credits to the players remains a 

fundamental challenge in sports analytics.

• Our solution: Risk-Sensitive Player Evaluation with Post-hoc Calibration
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Motivation

Example: The predicted distribution of future goals for the shots made at positions (a to d).

• Risk-Sensitive Evaluation: Distributions (a) and (b) have the same expectation (around 

0.6). The first shot has a larger risk-averse estimate and a smaller risk-seeking estimate.

• Post-hoc Calibration: shot made at the position (d) is rare in an ice hockey game, and 

thus this event is likely to be OoD, leading to a biased prediction.
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Uncertainty-Aware Reinforcement Learning
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Source of uncertainties:

• Aleatoric uncertainty: the intrinsic uncertainty of the environment (sports game is highly 

stochastic)

• Epistemic uncertainty: due to lack of knowledge, e.g., limited date samples (we only 

have access to a dataset)

• In sports evaluation, we need to consider both uncertainties



Aleatoric Uncertainty: Distributional RL
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Intrinsic uncertainty leads to value distribution:

• Traditional RL: only learn the mean value of the value distribution

• Distributional RL: learn the full value distribution

• Distributional Bellman Operator

𝒯𝜋𝑍𝑘 𝑠𝑡 , 𝑎𝑡 ≜ 𝑅𝑘 𝑠𝑡 , 𝑎𝑡 + 𝛾𝑍𝑘(𝑆𝑡+1, 𝐴𝑡+1)

Where 𝑠𝑡+1~𝑃𝒯(𝑆𝑡+1|𝑠𝑡, 𝑎𝑡) and 𝑎𝑡+1~𝜋(𝐴𝑡+1|𝑆𝑡+1)



Aleatoric Uncertainty: Distributional RL
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Intrinsic uncertainty leads to value distribution:

• Distributional Bellman Operator

• Converge? Distributional Bellman Operator is a contraction mapping under p-

Wasserstein metric

• A lot of existing methods use quantile regression, representing quantile function by a 

mixture of N Diracs

𝒯𝜋𝑍𝑘 𝑠𝑡 , 𝑎𝑡 ≜ 𝑅𝑘 𝑠𝑡 , 𝑎𝑡 + 𝛾𝑍𝑘(𝑆𝑡+1, 𝐴𝑡+1)

Where 𝑠𝑡+1~𝑃𝒯(𝑆𝑡+1|𝑠𝑡, 𝑎𝑡) and 𝑎𝑡+1~𝜋(𝐴𝑡+1|𝑆𝑡+1)



Aleatoric Uncertainty: Distributional RL

• Distributional RL for Aleatoric Uncertainty

1) Learn the distribution of 𝑍𝑘(𝑠𝑡 , 𝑎𝑡), i.e., number of 

goals when a player performs action 𝑎𝑡 in state 𝑠𝑡.

2) Represent 𝑍𝑘(𝑠𝑡 , 𝑎𝑡) by a uniform mixture of N 

supporting quantiles.

3) Distributional Bellman Operator

(𝜃𝑘,𝑖 estimates 

the 𝑖th quantile)
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Perform quantile regression to update Treat Home team / Away team as two agents 



Epistemic Uncertainty: Density Estimation
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Value distribution in Distributional RL still contains epistemic uncertainty:

• In online learning: insufficient exploration

• In offline learning: insufficient data samples (our case)

• Common solution: density estimation, to distinguish in Distribution (InD) and out of distribution 

(OoD) datapoints

• May fail to capture epistemic uncertainty: feature collapse, i.e., map InD and OoD data to the 

same feature space

• Feature extractor should be distance aware: (intuition: if x is close to y, then f(x) close to f(y))

• Bi-Lipschitz condition

• Implement: residual network with spectral norm

Lower bound ensures 

sensitivity to distance 
Upper bound ensures 

smoothness



• Density Estimator for Epistemic Uncertainty

Feature Space Conditional Normalizing Flow (FS-CNF)

1) Feature Extractor. 

To prevent feature collapse, the extractor is subjected 

to a bi-Lipschitz constraint:

2) Density Estimator.

Based on the extracted features, FS-CNF utilizes the 

Masked Auto-regressive Flow (MAF).

Epistemic Uncertainty: Density Estimation

Lower bound ensures 

sensitivity to distance 

Upper bound ensures 

smoothness
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• Risk-sensitive Impact Metric 

To understand how players respond to risk, we propose a Risk-sensitive Game Impact Metric (RiGIM )

Player Evaluation

where

Neurips 2022 Presentation

(1-c) level quantile

Former

where

number of times player L 

takes action a at state s

action 

impact

confidence 

level c
density 

checker

Ours



• Risk-sensitive Impact Metric 

To understand how players respond to risk, we propose a Risk-sensitive Game Impact Metric (RiGIM )

• Case Study: Player Ranking in Testing Games

We rank players according to their RiGIM scores in the NHL testing games.

Player Evaluation

where
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(1-c) level quantile

Risk seeking Risk averse

Defense man



Dataset

• Ice hockey from the National Hockey League, soccer from major European soccer leagues

• Over 9m events, over 4k games, over 6k players

• Event: (player who controls the puck or the ball)

• player_id

• action

• other features

Player Evaluation
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Player Evaluation Performance: Correlations with Standard Measures (free online)

• Measure whether the metrics can form a comprehensive evaluation to a player’s overall 

performance by computing the correlations between player ranking metrics and standard measures.

Player Evaluation
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We can choose some optimal confidence level c*=0.34 for ice hockey



Sensitivity to Risk: Correlations Conditioning on Different Confidence Levels

Measure whether RiGIM is sensitive to the risk by its correlations with the standard measures, where 

RiGIM is conditioned on a specific confidence level c (from 0 to 1)

Player Evaluation
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Question and Answering (Q&A)


