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Background

Reinforcement Learning (RL)

Figure 1: Markov Decision Process (MDP)

An agent interacts with environment using its policy π(a|s).

π(a|s): mapping from state to action S → A

Stochastic policy: π(a|s) = P[At = a|St = s]

By interaction, a trajectory τ = (S0,A0,R1,S1,A1,R2, ...)

Total return random variable G0 = R1 + γR2 + γ2R3 + ...
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Background

Reinforcement Learning (RL)

Figure 2: Random trajectories

Traditional (Risk-neutral) RL: maxπ E[G0]

Risk-averse RL: optimzie ρ[G0], where ρ is a risk measure

tail risk measure: VaR, CVaR
measure of variability: Variance, Standard Deviation

For measure of variability, variance is a common choice.
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Mean-Variance Policy Gradient

Mean-Variance RL

Mean-Variance RL: maximize the expected return, minimize the return variance

max
π

E[G0]− λV[G0] (1)

How to maximize E[G0]− λV[G0] w.r.t. π ?

E[G0]: time consistent, Bellman equation, dynamic programming

V[G0]: time inconsistent, minimizing variance at each step is not minimizing
variance of G0

Consider Policy Gradient

Parameterize π by θ (πθ e.g. deep neural network)

∇θ

(
E[G0]− λV[G0]

)
, then gradient ascent.
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Mean-Variance Policy Gradient

Mean-Variance Policy Gradient

J(θ) = E[G0]− λV[G0] = E[G0]− λ
(
E[G 2

0 ]− (E[G0])
2
)

(2)

∇θJ(θ) = ∇θE[G0]− λ(∇θE[G 2
0 ]− 2E[G0]∇θE[G0]) (3)

Policy Gradient Theorem (Sutton and Barto (2018))

∇θE[G0] = ∇θEτ [R(τ)] = Eτ

[
R(τ)∇θ

T−1∑
t=0

log πθ(at |st)
]

where R(τ) is the return of trajectory τ

(4)

∇θE[G0] : Eτ [R(τ)ω(θ)] ω(θ) = ∇θ

∑T−1
t=0 log πθ(at |st)

∇θE[G 2
0 ] : Eτ [R

2(τ)ω(θ)]

E[G0]∇θE[G0]: requires double sampling
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Mean-Variance Policy Gradient

Mean Variance PG Issue?

Mainly due to the square term

The variance of the gradient is very high

R2(τ) in ∇θE[G 2
0 ] = Eτ [R

2(τ)ω(θ)]

Sensitive to numerical scale

E[cG0] = cE[G0], V[cG0] = c2V[G0]. Change optimal solution

For double sampling E[G0]∇θE[G0]

not an issue if we can sample multiple τs.

Some works aim to do per trajectory update

Tamar et al. (2012) used different learning rates for value and policy

Xie et al. (2018) used Fenchel duality (x2 = maxy (2xy − y2)) to avoid
(E[G0])

2
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Mean-Variance Policy Gradient

Per-step Reward Variance

Consider V[R] as a proxy of V[G0] due to the following inequality (Bisi et al.
(2020))

V[G0] ≤
V[R]

(1− γ)2
(5)

Change the objective function to

max
π

E[R]− λV[R] = max
π

E[R]− λ(E[R2]− (E[R])2) (6)

Benefit of using V[R]

Eq 6 new reward R − λR2 + λ(Eπ[R])
2

Fenchel duality (Zhang et al. (2021)): E[R] = maxy (2E[R]y − y2)

New reward R − λR2 + 2λyR A risk neutral learning problem
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Mean-Variance Policy Gradient

Per-step Reward Variance Issue?

V[R] is not an appropriate surrogate for V[G0]

In deterministic case, V[G0] = 0, while V[R] ̸= 0 in general
Shift a deterministic r(s, a) may affect V[R] a lot

Reward modification hinders policy learning

In R − λR2 + 2λyR, −λR2 can make a positive reward to negative,
even λ is small
Prevent agent from visiting the ”good” state.
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Gini Deviation as an Alternative

Gini Deviation

Random variable X, i.i.d. copies X1,X2. Variance is

V[X ] =
1

2
E[(X1 − X2)

2] (7)

Gini deviation (GD) is

D[X ] =
1

2
E[|X1 − X2|] (8)

Both consider the variability or dispersion of a random variable.

Get rid of the square function

Positive homogeneity D[cX ] = cD[X ] for c > 0

New objective

max
π

E[G0]− λD[G0] (9)
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Gini Deviation as an Alternative

Gini Deviation

Lemma 1 (Wang et al. (2020)) Gini deviation is a signed Choquet integral with a
concave h given by h(α) = −α2 + α, α ∈ [0, 1].

D[X ] =

∫ 0

−∞

(
h
(
Pr(X ≥ x)

)
− h(1)

)
dx +

∫ ∞

0

h
(
Pr(X ≥ x)

)
dx (10)

Lemma 2 (Wang et al. (2020), Lemma3) If F−1
X is continuous, then

D[X ] =
∫ 1

0
F−1
X (1− α)dh(α) (F−1

X is the inverse CDF)

D[X ] =

∫ 1

0

F−1
X (α)(2α− 1)dα (11)
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Gini Deviation as an Alternative

Gini Deviation Gradient Formula

D[X ] =

∫ 1

0

F−1
X (α)(2α− 1)dα

Suppose the density function of X is fX (x ; θ) with parameter θ.

Interested in computing ∇θD[Xθ]

In RL, may think X is G0, θ is policy.
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Gini Deviation as an Alternative

Gini Deviation Gradient Formula

Define the α-level quantile value as qα(X ; θ)

Assumptions
X is a continuous random variable, and bounded in range [−b, b] for all θ.
∂
∂θi

qα(X ; θ) exists and is bounded for all θ, where θi is the i-th element of θ.
∂fX (x ;θ)

∂θi
/fX (x ; θ) exists and is bounded for all θ, z . θi is the i-th element of θ.

∇θD[Xθ] = −Ex∼Xθ

[
∇θ log fX (x ; θ)

∫ b

x

(
2FXθ

(t)− 1
)
dt
]

(12)
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Gini Deviation as an Alternative

Gini Deviation Gradient Formula

Get back to RL.

∇θD[G0] = −ER(τ)∼G0

[
∇θ log fG0(R(τ); θ)

∫ b

R(τ)

(
2FG0(t)− 1

)
dt
]

(13)

∇θ log fG0(R(τ); θ): in policy gradient is ∇θ

∑T−1
t=0 log πθ(at |st)∫ b

R(τ)
FG0(t)dt: use ordered statistics, e.g., R(τ1) ≤ R(τ2) ≤ ... ≤ R(τn).

Combine with mean, whole learning procedure

Sample n trajectories {τi}ni=1. Compute {R(τi )}ni=1

Update θ by ∇θE[G0] Equation (4)

Sort {R(τi )}ni=1. Update θ by −λ∇θD[G0] Equation (13)
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Example

LunarLander

Figure 3: Modified LunarLander

The goal is to land the agent on the ground without crashing.

Reward is 100 if it comes to rest (unstable for total return variance and
per-step variance).

Give an additional noisy reward if agent lands in the right area.
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Example

LunarLander

Figure 4: Return and landing at left rate

Mean-Gini Deviation (MG) compares with

Risk-neutral (REINFORCE) Equation (4)

Mean-Variance PG (MVO) Equation (3) (V[G0], double sampling)

Tamar et al. (2012) (Tamar) (V[G0], per trajectory)

Xie et al. (2018) (MVP) (V[G0], per trajectory)

Zhang et al. (2021) (MVPI) (V[R])
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Thank you!
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