An Alternative to Variance: Gini Deviation for Risk-averse Policy Gradient

Yudong Luo^{1,4}, Guiliang Liu², Pascal Poupart^{1,4}, Yangchen Pan³ yudong.luo@uwaterloo.ca

¹University of Waterloo, ²CUHK, Shenzhen, ³University of Oxford, ⁴Vector Institute

Table of Contents

- 2 Mean-Variance Policy Gradient
- Gini Deviation as an Alternative

Reinforcement Learning (RL)

Figure 1: Markov Decision Process (MDP)

An agent interacts with environment using its policy $\pi(a|s)$.

- $\pi(a|s)$: mapping from state to action $\mathcal{S} \to \mathcal{A}$
- Stochastic policy: $\pi(a|s) = \mathbb{P}[A_t = a|S_t = s]$

By interaction, a trajectory $\tau = (S_0, A_0, R_1, S_1, A_1, R_2, ...)$

• Total return random variable $G_0 = R_1 + \gamma R_2 + \gamma^2 R_3 + ...$

Reinforcement Learning (RL)

Figure 2: Random trajectories

- Traditional (Risk-neutral) RL: $\max_{\pi} \mathbb{E}[G_0]$
- Risk-averse RL: optimzie $\rho[G_0]$, where ρ is a risk measure
 - tail risk measure: VaR, CVaR
 - measure of variability: Variance, Standard Deviation
- For measure of variability, variance is a common choice.

Mean-Variance RL

Mean-Variance RL: maximize the expected return, minimize the return variance

$$\max_{\pi} \mathbb{E}[G_0] - \lambda \mathbb{V}[G_0] \tag{1}$$

How to maximize $\mathbb{E}[G_0] - \lambda \mathbb{V}[G_0]$ w.r.t. π ?

- $\mathbb{E}[G_0]$: time consistent, Bellman equation, dynamic programming
- $\mathbb{V}[G_0]$: time inconsistent, minimizing variance at each step is not minimizing variance of G_0

Consider Policy Gradient

- Parameterize π by θ (π_{θ} e.g. deep neural network)
- $\nabla_{\theta} (\mathbb{E}[G_0] \lambda \mathbb{V}[G_0])$, then gradient ascent.

Mean-Variance Policy Gradient

$$J(\theta) = \mathbb{E}[G_0] - \lambda \mathbb{V}[G_0] = \mathbb{E}[G_0] - \lambda \left(\mathbb{E}[G_0^2] - (\mathbb{E}[G_0])^2 \right)$$
(2)

$$\nabla_{\theta} J(\theta) = \nabla_{\theta} \mathbb{E}[G_0] - \lambda (\nabla_{\theta} \mathbb{E}[G_0^2] - 2\mathbb{E}[G_0] \nabla_{\theta} \mathbb{E}[G_0])$$
(3)

Policy Gradient Theorem (Sutton and Barto (2018))

$$\nabla_{\theta} \mathbb{E}[G_0] = \nabla_{\theta} \mathbb{E}_{\tau}[R(\tau)] = \mathbb{E}_{\tau} \left[R(\tau) \nabla_{\theta} \sum_{t=0}^{T-1} \log \pi_{\theta}(a_t | s_t) \right]$$
(4)

where $R(\tau)$ is the return of trajectory τ

- $\nabla_{\theta} \mathbb{E}[G_0] : \mathbb{E}_{\tau}[R(\tau)\omega(\theta)] \quad \omega(\theta) = \nabla_{\theta} \sum_{t=0}^{T-1} \log \pi_{\theta}(a_t|s_t)$
- $\nabla_{\theta} \mathbb{E}[G_0^2] : \mathbb{E}_{\tau}[R^2(\tau)\omega(\theta)]$
- $\mathbb{E}[G_0] \nabla_{\theta} \mathbb{E}[G_0]$: requires double sampling

Mean Variance PG Issue?

Mainly due to the square term

- The variance of the gradient is very high
 - $R^2(\tau)$ in $\nabla_{\theta} \mathbb{E}[G_0^2] = \mathbb{E}_{\tau}[R^2(\tau)\omega(\theta)]$
- Sensitive to numerical scale
 - $\mathbb{E}[cG_0] = c\mathbb{E}[G_0], \mathbb{V}[cG_0] = c^2\mathbb{V}[G_0]$. Change optimal solution

For double sampling $\mathbb{E}[G_0] \nabla_{\theta} \mathbb{E}[G_0]$

• not an issue if we can sample multiple τ s.

Some works aim to do per trajectory update

- Tamar et al. (2012) used different learning rates for value and policy
- Xie et al. (2018) used Fenchel duality $(x^2 = \max_y (2xy y^2))$ to avoid $(\mathbb{E}[G_0])^2$

Per-step Reward Variance

Consider $\mathbb{V}[R]$ as a proxy of $\mathbb{V}[G_0]$ due to the following inequality (Bisi et al. (2020))

$$\mathbb{V}[G_0] \le \frac{\mathbb{V}[R]}{(1-\gamma)^2} \tag{5}$$

Change the objective function to

$$\max_{\pi} \mathbb{E}[R] - \lambda \mathbb{V}[R] = \max_{\pi} \mathbb{E}[R] - \lambda (\mathbb{E}[R^2] - (\mathbb{E}[R])^2)$$
(6)

Benefit of using $\mathbb{V}[R]$

- Eq 6 new reward $R \lambda R^2 + \lambda (\mathbb{E}_{\pi}[R])^2$
- Fenchel duality (Zhang et al. (2021)): $\mathbb{E}[R] = \max_{y}(2\mathbb{E}[R]y y^2)$
- New reward $R \lambda R^2 + 2\lambda yR$ A risk neutral learning problem

Per-step Reward Variance Issue?

- $\mathbb{V}[R]$ is not an appropriate surrogate for $\mathbb{V}[G_0]$
 - In deterministic case, $\mathbb{V}[G_0] = 0$, while $\mathbb{V}[R] \neq 0$ in general
 - Shift a deterministic r(s, a) may affect $\mathbb{V}[R]$ a lot
- Reward modification hinders policy learning
 - In $R \lambda R^2 + 2\lambda y R$, $-\lambda R^2$ can make a positive reward to negative, even λ is small
 - Prevent agent from visiting the "good" state.

Gini Deviation

Random variable X, i.i.d. copies X_1, X_2 . Variance is

$$\mathbb{V}[X] = \frac{1}{2}\mathbb{E}[(X_1 - X_2)^2]$$
(7)

Gini deviation (GD) is

$$\mathbb{D}[X] = \frac{1}{2}\mathbb{E}[|X_1 - X_2|] \tag{8}$$

Both consider the variability or dispersion of a random variable.

- Get rid of the square function
- Positive homogeneity $\mathbb{D}[cX] = c\mathbb{D}[X]$ for c > 0

New objective

$$\max_{\pi} \mathbb{E}[G_0] - \lambda \mathbb{D}[G_0] \tag{9}$$

Yudong Luo (University of Waterloo)

An Alternative to Variance

Gini Deviation

Lemma 1 (Wang et al. (2020)) Gini deviation is a signed Choquet integral with a concave *h* given by $h(\alpha) = -\alpha^2 + \alpha, \alpha \in [0, 1]$.

$$\mathbb{D}[X] = \int_{-\infty}^{0} \left(h(\Pr(X \ge x)) - h(1) \right) dx + \int_{0}^{\infty} h(\Pr(X \ge x)) dx$$
(10)

Lemma 2 (Wang et al. (2020), Lemma3) If F_X^{-1} is continuous, then $\mathbb{D}[X] = \int_0^1 F_X^{-1}(1-\alpha)dh(\alpha)$ (F_X^{-1} is the inverse CDF)

$$\mathbb{D}[X] = \int_0^1 F_X^{-1}(\alpha)(2\alpha - 1)d\alpha \tag{11}$$

Gini Deviation Gradient Formula

$$\mathbb{D}[X] = \int_0^1 F_X^{-1}(\alpha)(2\alpha - 1)d\alpha$$

Suppose the density function of X is $f_X(x; \theta)$ with parameter θ .

- Interested in computing $\nabla_{\theta} \mathbb{D}[X_{\theta}]$
- In RL, may think X is G_0 , θ is policy.

Gini Deviation Gradient Formula

Define the α -level quantile value as $q_{\alpha}(X; \theta)$

Assumptions

X is a continuous random variable, and bounded in range [-b, b] for all θ . $\frac{\partial}{\partial \theta_i} q_{\alpha}(X; \theta)$ exists and is bounded for all θ , where θ_i is the *i*-th element of θ . $\frac{\partial f_X(x;\theta)}{\partial \theta_i}/f_X(x;\theta)$ exists and is bounded for all $\theta, z. \theta_i$ is the *i*-th element of θ .

$$\nabla_{\theta} \mathbb{D}[X_{\theta}] = -\mathbb{E}_{x \sim X_{\theta}} \left[\nabla_{\theta} \log f_X(x;\theta) \int_{x}^{b} \left(2F_{X_{\theta}}(t) - 1 \right) dt \right]$$
(12)

Gini Deviation Gradient Formula

Get back to RL.

$$\nabla_{\theta} \mathbb{D}[G_0] = -\mathbb{E}_{R(\tau) \sim G_0} \left[\nabla_{\theta} \log f_{G_0}(R(\tau); \theta) \int_{R(\tau)}^b \left(2F_{G_0}(t) - 1 \right) dt \right]$$
(13)

- $\nabla_{\theta} \log f_{G_0}(R(\tau); \theta)$: in policy gradient is $\nabla_{\theta} \sum_{t=0}^{T-1} \log \pi_{\theta}(a_t|s_t)$
- $\int_{R(\tau)}^{b} F_{G_0}(t) dt$: use ordered statistics, e.g., $R(\tau_1) \leq R(\tau_2) \leq ... \leq R(\tau_n)$.

Combine with mean, whole learning procedure

- Sample *n* trajectories $\{\tau_i\}_{i=1}^n$. Compute $\{R(\tau_i)\}_{i=1}^n$
- Update θ by $\nabla_{\theta} \mathbb{E}[G_0]$ Equation (4)
- Sort $\{R(\tau_i)\}_{i=1}^n$. Update θ by $-\lambda \nabla_{\theta} \mathbb{D}[G_0]$ Equation (13)

LunarLander

Figure 3: Modified LunarLander

- The goal is to land the agent on the ground without crashing.
- Reward is 100 if it comes to rest (unstable for total return variance and per-step variance).
- Give an additional noisy reward if agent lands in the right area.

LunarLander

Figure 4: Return and landing at left rate

Mean-Gini Deviation (MG) compares with

- Risk-neutral (REINFORCE) Equation (4)
- Mean-Variance PG (MVO) Equation (3) ($\mathbb{V}[G_0]$, double sampling)
- Tamar et al. (2012) (Tamar) ($\mathbb{V}[G_0]$, per trajectory)
- Xie et al. (2018) (MVP) ($\mathbb{V}[G_0]$, per trajectory)
- Zhang et al. (2021) (MVPI) (V[R])

Yudong Luo (University of Waterloo)

Thank you!

Lorenzo Bisi, Luca Sabbioni, Edoardo Vittori, Matteo Papini, and Marcello Restelli. Risk-averse trust region optimization for reward-volatility reduction. *International Joint Conference on Artificial Intelligence*, 2020.

- Richard S Sutton and Andrew G Barto. *Reinforcement learning: An introduction*. MIT press, 2018.
- Aviv Tamar, Dotan Di Castro, and Shie Mannor. Policy gradients with variance related risk criteria. In *Proceedings of the twenty-ninth international conference on machine learning*, pages 387–396, 2012.
- Ruodu Wang, Yunran Wei, and Gordon E Willmot. Characterization, robustness, and aggregation of signed choquet integrals. *Mathematics of Operations Research*, 45(3):993–1015, 2020.
- Tengyang Xie, Bo Liu, Yangyang Xu, Mohammad Ghavamzadeh, Yinlam Chow, Daoming Lyu, and Daesub Yoon. A block coordinate ascent algorithm for mean-variance optimization. *Advances in Neural Information Processing Systems*, 31, 2018.
- Shangtong Zhang, Bo Liu, and Shimon Whiteson. Mean-variance policy iteration for risk-averse reinforcement learning. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 35, pages 10905–10913, 2021.