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Abstract—This paper explores a fundamental problem
of eliminating the differences between source subject and
target subject in EEG-based emotion recognition. The major
limitation of traditional classification methods is that the lack
of domain adaptation and subspace alignment will degrade
the performance of cross-subject emotion recognition. To
address this problem, we adopt Domain Adaptation Network
(DAN) for knowledge transfer, which maintains both feature
discriminativeness and domain-invariance during training
stage. A feed-forward neural network is constructed by aug-
menting a few standard layers and a gradient reversal layer.
Compared with five traditional methods, DAN outperforms
its counterparts and achieves the mean accuracy of 79.19%.
Moreover, a visualization of the features learned by DAN
is represented in this paper, which intuitively describes the
transfer virtue of domain adaptation network.
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I. INTRODUCTION

Emotion is normal but essential to humans. It not only
contributes to interaction between humans, but also plays
a critical role in rational and intelligent behavior. With
the development of wearable EEG devices and affective
Brain-Computer Interface (aBCI) [1], researchers begin to
use EEG for emotion recognition.

A variety of classifiers have been constructed for EEG-
based emotion recognition, such as k-nearest neighbor
(kNN), logistic regression (LR), support vector machine
(SVM), and deep belief network (DBN) [2]. However,
these classifiers are not suitable for cross subject emotion
recognition due to the variability between subjects and
sessions.

Domain adaptation (DA) scenario is investigated to
address this problem [3]. Typically, training samples with
class labels are defined as source domain and testing sam-
ples with different distributions are called target domain
[4]. In this work, we denote X ∈ X as an input of
(X, y) from the EEG recording, where y ∈ Y is the
corresponding emotion label. Let C be the number of
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channels and d be the number of time series samples,
then X = RC∗d in this circumstance. According to [4],
D = {X , P (X)} is a domain, where P (X) is the marginal
probability distribution of X . In our case, this domain
contains given subjects from which we recorded the EEG
signals. The source and target domains in this paper share
the same feature space, XS = XT , but differ in marginal
probability distributions, which means P (XS) ̸= P (XT ).
The key assumption in most domain adaptation methods is
that the conditional probability distributions are the same,
i.e. P (YS∥XS) = P (YT ∥XT ) [5].

A crucial issue for subject transfer is how to reduce
the discrepancy between source domain and target do-
main. Several approaches are proposed to minimize the
variability of EEG signals among subjects. Zheng et
al. [6] applied transfer component analysis (TCA) [7]
and kernel principle component analysis (KPCA) [8] for
feature selection and reduction. Besides, Zheng et al.
[5] adopted transductive parameter transfer (TPT) [9]
method to personalize EEG-based affective models, which
achieves a significant improvement in subject transfer.

Inspired by the transferability of deep neural networks,
in this paper we propose a EEG-based emotion recognition
method by adopting domain adaptation network (DAN)
which learns domain-invariant features by backpropaga-
tion. We compare the performance of our work with three
state-of-the-art approaches, TCA, KPCA and TPT.

II. METHOD

A. Domain Adaptation Network
We use a domain adaptation network (DAN) to achieve

transfer learning. This framework is proposed by Yaroslav
Ganin el at. [10] for image classification. This architecture
consists of three parts as shown in Figure 1. We denote
S(x) and T (x) as the marginal distributions of source
and target domain, respectively. Given the training dataset
{x1,x2, ...,xN} concatenated from both source and target
data, we introduce a binary variable di ∈ {0, 1} serving as
the domain label for the i-th sample. It points out which
domain distribution xi comes from, i.e. xi ∼ S(x) if di =
0 and xi ∼ T (x) if di = 1.

For each input data x, a feature vector f ∈ RD is firstly
learned by a feature extractor Mf , i.e. f = Mf (x, θf ),
where θf denotes parameters of all layers in this mapping.



feature extractor!"

domain #$%&&'(')* !!

label predictor !!

class label y

domain label d

gradient 
reversal 

layer
loss "!

#"!
#$!

%&
#"!
#$!

loss "!
"#$
"%!

"#&
"%&

Subject1

Subject2

Subjectn

Figure 1. Domain Adaptation Network contains a feature extractor (green), a label predictor (blue), a domain classifier (red) and a gradient reversal
layer (black). Feature extractor and label predictor together form a traditional feed-forward neural network. These two parts can be used to predict
the label. Domain adaptation is achieved by feature extractor and domain classifier by backpropagation. The gradient conveyed from domain classifier
to feature extractor is multiplied by a negative parameter in gradient reversal layer. In this way, traditional gradient descent method can be applied.
Label predictor ensures the data discrimitiveness and domain classifier maintains the domain-invariance.

Then the feature vector f is mapped by two parallel
networks. The label predictor My maps f with parameters
θy and the domain classifier Md maps f with parameters
θd.

The label predictor My is used to predict labels of
the source domain. In order to get a good prediction
performance, we intend to minimize the loss of label
predictor on the the source domain. Consequently, both
parameters θf and θy are adjusted during the training time
aiming to minimize the experiential loss for source domain
samples.

The domain classifier Md indicates the domain la-
bel d for each input data. The network learns domain-
invariant feature f from input data, which means the
distributions S(f) = {Mf (x, θf )∥x ∼ S(x)} and
T (f) = {Mf (x, θf )∥x ∼ T (x)} should be similar.
According to covariance shif assumption [11], the features
are transferable and the label prediction accuracy on target
domain matches that on source domain in this case. To
tackle this problem, the loss of domain classifier Md is
used to measure the domain discrepancy.

The loss function of the architecture can be computed
as

E(θf , θy, θd) =
∑

i=1...N
di=0

Ly(My(Mf (xi; θf ); θy), yi)−

λ
∑

i=1...N

Ld(Md(Mf (xi; θf ); θd), yi)

=
∑

i=1..N
di=0

Li
y(θf , θy)− λ

∑

i=1...N

Li
d(θf , θd)

(1)
where Ly(·, ·) is the loss of class label prediction, Ld(·, ·)
represents the loss of domain label classification, Li

y and
Li
d denote the corresponding loss functions of i-th training

example, and λ is the trade-off parameter that balances the
two objectives.

During learning process, a method similar to the s-

tandard stochastic gradient descent (SGD) is adopted to
search the saddle point: θf ← θf − µ(

∂Li
y

∂θf
− λ∂Li

d
∂θf

),

θy ← θy − µ
∂Li

y

∂θy
, θd ← θd − µ∂Li

d
∂θd

, where µ denotes
the learning rate.

The updating process is similar to SGD except for pa-
rameters θf which combine gradients from label predictor
and domain classifier. However, directly implementing it
using SGD is difficult. Ganin et al. [10] adds a gradient
reversal layer (GRL) between feature extractor and domain
classifier. During forward propagation, GRL acts as an
identity transformation which does not change the input
parameters. While in backpropagation, GRL multiplies −λ
to the gradient from subsequent layer and passes the result
to the preceding layer. More precisely, the GRL can be
regarded as a pseudo-function Rλ: Rλ = x, dRλ

dx = −λI ,
where I is an identity matrix. With the help of such
transformation, the loss function E can be further written
as:

Ẽ(θf , θy, θd) =
∑

i=1...N
di=0

Ly(My(Mf (xi; θf ); θy), yi)+

∑

i=1...N

Ld(Md(Rλ(Mf (xi; θf )); θd), yi)

(2)
After optimization, the feature extractor Mf (·, ·) and label
predictor My(·, ·) can be used in target domain to predict
the label.

III. EXPERIMENT SETUP

A. EEG Dataset
In this paper, we evaluate the performance of domain

adaptation network (DAN) using a publicly available EEG
dataset for emotion recognition called SJTU Emotion EEG
dataset (SEED)1 downloaded from the project website.
Different from other existing EEG dataset, each participant

1http://bcmi.sjtu.edu.cn/˜seed/



performs experiments three times at intervals of one week
or longer and is asked to assess his or her real emotional
reactions right after watching a movie chip. Only the data
with explicit corresponding emotions are used for analysis.
For more details of SEED, we recommend readers to refer
to the literature [2].

B. Signal Preprocessing and Feature Extraction
For signal preprocessing, since raw EEG signals are

often contaminated by electromyography (EMG) signals
and electrooculogram (EOG) signals [12], a bandpass filter
between 1 Hz and 75 Hz is used to filter out noise and
artifacts. To reduce the data size, EEG signals are further
down-sampled to 200 Hz.

For feature extraction, differential entropy (DE) features
are extracted from raw data since DE outperforms power
spectral density (PSD) [13]. DE features contain five
frequency bands: delta (1-4 Hz), theta (4-8 Hz), alpha (8-
14 Hz), beta (14-31 Hz), and gamma (31-50 Hz). Each
frequency band contains the features of 62 EEG channels,
thus the total dimensions of extracted EEG features are
310.

C. Parameter Details
All the evaluations are conducted using leave-one-

subject-out cross validation. Each time, one subject is
selected as target domain out of 15 subjects and the rest
14 remain as source domain. Classification accuracy is
evaluated on the target domain.

Baselines. We adopt Support Vector Machine (SVM) as
one of our baseline. We use a linear kernel and search the
parameter C from -10 to 10 with step of 1. To compare
with DAN, we also adopt traditional multilayer perceptron
named NN as the other baseline. The number of hidden
layers is 3, the number of neurons in each layer is set by
searching [50, 100, 200, 400] and the learning rate is set
to 0.1.

TCA & KPCA. Due to the limitation of time and mem-
ory, we randomly select 5000 samples from 14 subjects as
source domain data while the target domain data remain
the same. The kernel function is linear kernel and the
regularization parameter µ is set to 1.

TPT. Multiple classifiers are learned on each source
domain data using linear Support Vector Machine (lSVM),
and the regularization parameter is set to 0.1. Multioutput
Support Vector Regression (M-SVR) framework is utilized
to learn the final mapping function f(·).

DAN. The feature extractor has two hidden layers with
100 neurons in each layer. The label predictor has one
hidden layer with 100 neurons and a output layer. The
domain classifier has one hidden layer with 100 neurons,
one gradient reversal layer and one output layer. The
learning rate is set to 0.1 and the parameter λ in gradient
layer is set to 1.

IV. EXPERIMENT RESULTS

In this part, we will discuss experiment results of six
different methods on SEED. We adopt leave-one-subject-
out evaluation scheme in each case.
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Figure 2. The accuracies of six methods (SVM, NN, TCA, KPCA,
TPT, DAN) for each subject and the mean accuracies.

Table I
MEAN ACCURACIES AND STANDARD DEVIATIONS OF THE SIX

DIFFERENT METHODS

Methods SVM NN TCA KPCA TPT DAN
Mean 0.5818 0.6101 0.6400 0.6902 0.7517 0.7919
Std. 0.1385 0.1238 0.1466 0.0925 0.1283 0.1314

Figure 2 shows the accuracies of six different methods
(SVM, NN, TCA, KPCA, TPT and DAN) for 15 sub-
jects and Table I presents mean accuracies and standard
deviations in detail. SVM has the lowest accuracy of
58.18%. Because the EEG signals vary between subjects,
individual classifiers learned by SVM in source domain
cannot distinguish emotion states in target domain pre-
cisely. By comparison, TCA and KPCA extract latent
common components from both source and target data
with low domain variance. These extracted features can
improve the performance of classification. TPT achieves
accuracy of 75.17%. It learns a mapping function that
can transfer the classifiers trained in source domain to
target domain instead of looking for a latent feature space
between source and target data. Our DAN outperforms
these method with the mean accuracy of 79.19%. The
standard deviation of DAN is not the smallest, because
the result of subject 5 is extremely low.

To illustrate the transferability and discriminativeness
of DAN learned features, we visualize the output of the
second hidden layer from DAN and NN by projecting
features into a 3-dimensional space using t-SNE [14] as
shows in Figure 3. We then make the following observa-
tions: (1) NN features from different subjects are scattered
in three emotion states, while DAN features are aligned
much better between source and target domains. (2) With
NN features, the datapoints are not discriminative enough,
while with DAN features, all of the three emotion states
can be evidently distinguished. These observations explain
the superior performance of DAN over NN: (1) indicates
that DAN can reduce the differences between source and
target domain to learn domain-invariant features, which
makes source classifiers more suitable for target data. (2)
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Figure 3. The effect of domain adaptation on the distributions of
extracted features. Figures (a) and (b) denote NN and DAN, respectively,
which both present all three different emotion states together from
different domains.

implies that different emotion states are more easily iden-
tified with DAN features, which guarantees the accuracy
of label predictor.

V. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a neural network archi-
tecture for EEG-based emotion recognition with transfer
learning techniques. Domain-invariant features are learned
by backpropogation after adding a gradient reversal layer
to domain classifier. We have compared the performance
with five different methods: SVM, NN, TCA, KPCA, and
TPT for SEED. The experimental results show that domain
adaptation network (DAN) exceeds the other approaches
in terms of accuracy, and achieves a 21.01% increase
compared with SVM and a 18.18% increase compared
with NN. We also search different parameters for DAN
to find the optimal values. Our future work will focus
on applying our proposed model to more categories of
emotions, as well as to domain adaptation on subjects from
different culture backgrounds.
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[1] C. Mühl, B. Allison, A. Nijholt, and G. Chanel,
“A survey of affective brain computer interfaces:
principles, state-of-the-art, and challenges,” Brain-
Computer Interfaces, vol. 1, no. 2, pp. 66–84, 2014.

[2] W.-L. Zheng and B.-L. Lu, “Investigating critical
frequency bands and channels for EEG-based emo-
tion recognition with deep neural networks,” IEEE
Transactions on Autonomous Mental Development,
vol. 7, no. 3, pp. 162–175, 2015.

[3] L. Duan, D. Xu, and I. W.-H. Tsang, “Domain adap-
tation from multiple sources: A domain-dependent
regularization approach,” IEEE Transactions on Neu-
ral Networks and Learning Systems, vol. 23, no. 3,
pp. 504–518, 2012.

[4] S. J. Pan and Q. Yang, “A survey on transfer learn-
ing,” IEEE Transactions on Knowledge and Data
Engineering, vol. 22, no. 10, pp. 1345–1359, 2010.

[5] W.-L. Zheng and B.-L. Lu, “Personalizing EEG-
based affective models with transfer learning,” in
Proceedings of the Twenty-Fifth International Joint
Conference on Artificial Intelligence. AAAI Press,
2016, pp. 2732–2738.

[6] W.-L. Zheng, Y.-Q. Zhang, J.-Y. Zhu, and B.-L. Lu,
“Transfer components between subjects for EEG-
based emotion recognition,” in International Confer-
ence on Affective Computing and Intelligent Interac-
tion. IEEE, 2015, pp. 917–922.

[7] S. J. Pan, I. W. Tsang, J. T. Kwok, and Q. Yang,
“Domain adaptation via transfer component analy-
sis,” IEEE Transactions on Neural Networks, vol. 22,
no. 2, pp. 199–210, 2011.

[8] B. Schölkopf, A. Smola, and K.-R. Müller, “Non-
linear component analysis as a kernel eigenvalue
problem,” Neural Computation, vol. 10, no. 5, pp.
1299–1319, 1998.

[9] E. Sangineto, G. Zen, E. Ricci, and N. Sebe, “We are
not all equal: Personalizing models for facial expres-
sion analysis with transductive parameter transfer,”
in Proceedings of the 22nd ACM international con-
ference on Multimedia. ACM, 2014, pp. 357–366.

[10] Y. Ganin and V. Lempitsky, “Unsupervised domain
adaptation by backpropagation,” in International
Conference on Machine Learning, 2015, pp. 1180–
1189.

[11] H. Shimodaira, “Improving predictive inference un-
der covariate shift by weighting the log-likelihood
function,” Journal of Statistical Planning and Infer-
ence, vol. 90, no. 2, pp. 227–244, 2000.

[12] M. Fatourechi, A. Bashashati, R. K. Ward, and G. E.
Birch, “EMG and EOG artifacts in brain computer
interface systems: A survey - clinical neurophysiol-
ogy,” Clinical Neurophysiology, vol. 118, no. 3, pp.
480–494, 2007.

[13] R.-N. Duan, J.-Y. Zhu, and B.-L. Lu, “Differential
entropy feature for EEG-based emotion classifica-
tion,” in 6th International IEEE/EMBS Conference
on Neural Engineering. IEEE, 2013, pp. 81–84.

[14] L. Van Der Maaten, “Barnes-hut-sne,” in Proceed-
ings of the First International Conference on Learn-
ing Representations, 2013.


