Distributional Reinforcement Learning with Monotonic Splines

Abstract

One key challenge in quantile based distributional
RL lies in how to parameterize the quantile func-

tion when minimizing the Wasserstein metric of

temporal differences. Existing algorithms use
step functions or piece-wise linear functions.

We propose to learn smooth continuous quan-
tile functions represented by monotonic rational-

quadratic splines

» Efficiently learned by deep neural network
» Naturally solves the quantile crossing problem

« Qutperforms its counterparts in stochastic
domains

Distributional RL

Distributional RL algorithms characterize the total
return as a random variable and estimate its under-
lying distribution, so that the intrinsic uncertainty
of MDP is captured. In contrast, traditional value-
based RL algorithms focus only on the mean of the
random variable.
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Figure 1: Traditional RL VS. Distributional RL

Distributional Bellman Operator
Traditional Bellman equation

Q(s,a) = ER(s,a) + yEQ(S, A) (1)
Distributional Bellman operator |1

T"Z(s,a) 2 R(s,a) +vZ(S', A (2)
with S" ~ P(:|s,a), A ~ 7(-|S"), and X 2 Y

indicates that random variables X and Y follow the

same distribution.
Two Key Questions

« Which distance metric to optimize

« How to parameterize the return distribution
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Wasserstein Metric

The distributional Bellman operator is a contraction
under p-Wasserstein metric [1].

Wy(X,Y) = ([ |F5'(w) = B @)Pdw)'? (3)

where F'~! is the quantile function (inverse cumula-
tive distribution function).

Directly minimize Wesserstein loss from samples sut-
fers from biased gradients. Quantile Regression

(QR) offers unbiased gradient estimation |2|. The
loss function is Huber quantile regression loss.

QR-based Methods

0 QR-DQN 2] and NC-QR-DQN |3]
represents return distribution by a uniform
mixture of N Diracs

1 N
Zy(s,a) = N ; 6@'(8»@) (4)

®IQN (4] takes arbitrary 7 ~ U(|0, 1}), and
outputs the corresponding quantile value.

©FQF |5| learns a separate network to propose 7
taking state as input.

o NDQFN [6] uses piece-wise linear function.

Learning Quantile Function with Monotonic Splines

Limitations of the existing methods: 1) a precise approximation for quntile function may need infinite 7s
if use discretization (QR-DQN, NC-QR-DQN, IQN, FQF) 2) quantile crossing problem (QR-DQN, IQN,
FQF) 3) piece-wise linear function has limited approximation ability (NDQFN).

Monotonic Splines

Monotonic splines produce a monotonic interpolant
to a set of monotonic data points (called knots). The
monotonicity of this kind of splines naturally fits the
non-decreasing property of the quantile tfunction.
Monotonic Rational Quadratic Splines
Suppose we learn splines for K bins. Neural net
gives knots { (g, yi) H, and derivatives {d; }i .
o)< ..<Tp<..<xg.20=0 28=1

Yo < ... < Yp < ... < Yg. dj 1s positive.

Denote gx = (Yk+1 — Yi)/ (@11 — 2x) and hy(z) =
(x — x1)/(Tp1 — xp) for © € |xp, x4 1]. Use hy for
short of hi(x), we have two quadratic functions

Ok(hk) — gkykﬂh% T (ykdk+1 =+ yk+1)hk(1 — hk)
+ guyr(1 — hy)
Pi(hi) = g + (diks1 + di — 2g5) hi(1 — hy)
(5)

By.(hy) 0

gkh% -+ dkhk(l — hk)]

gr + (dp1 + di — 2g5) hi(1 — hk(>7)

Learned Quantile Function

» 1 sigmoid + cumulative sum
= 5. sigmoid + rescale (multiply a then plus )
« d;.: softplus

Stochastic Environment Most previous distri-
butional RL algorithms were evaluated with deter-
ministic Atari games. It is problematic since the
resulting value distributions tend to be simple and
close to deterministic.

Windy Gridworld Some columns are affected by
some wind. A reward of —1 is earned at each step.
Have probability 0.1 of moving in a random direction
without wind effect, otherwise the wind pushes the
agent northward.
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Figure 2: Learned quantile in stochastic Windy Gridworld
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Stochastic PyBulletGym

Add noise € ~ N (0, o) both the location and veloc-

ity of each part of the robot. Combine distributional
RL with DDPG and SAC. Check results details in

our paper.
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Figure 3: Performance in stochastic PyBulletGym
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