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Abstract

One key challenge in quantile based distributional
RL lies in how to parameterize the quantile func-
tion when minimizing the Wasserstein metric of
temporal differences. Existing algorithms use
step functions or piece-wise linear functions.
We propose to learn smooth continuous quan-
tile functions represented by monotonic rational-
quadratic splines
•Efficiently learned by deep neural network
•Naturally solves the quantile crossing problem
•Outperforms its counterparts in stochastic
domains

Distributional RL

Distributional RL algorithms characterize the total
return as a random variable and estimate its under-
lying distribution, so that the intrinsic uncertainty
of MDP is captured. In contrast, traditional value-
based RL algorithms focus only on the mean of the
random variable.

Figure 1: Traditional RL VS. Distributional RL

Distributional Bellman Operator
Traditional Bellman equation

Q(s, a) = ER(s, a) + γEQ(S ′, A′) (1)
Distributional Bellman operator [1]

T πZ(s, a) D= R(s, a) + γZ(S ′, A′) (2)
with S ′ ∼ P (·|s, a), A′ ∼ π(·|S ′), and X

D= Y
indicates that random variables X and Y follow the
same distribution.
Two Key Questions
•Which distance metric to optimize
•How to parameterize the return distribution

Wasserstein Metric

The distributional Bellman operator is a contraction
under p-Wasserstein metric [1].

Wp(X, Y ) = (
∫ 1

0
|F−1

X (ω)− F−1
Y (ω)|pdω)1/p (3)

where F−1 is the quantile function (inverse cumula-
tive distribution function).
Directly minimize Wesserstein loss from samples suf-
fers from biased gradients. Quantile Regression
(QR) offers unbiased gradient estimation [2]. The
loss function is Huber quantile regression loss.

QR-based Methods

1 QR-DQN [2] and NC-QR-DQN [3]
represents return distribution by a uniform
mixture of N Diracs

Zθ(s, a) = 1
N

N∑
i=1
δθi(s,a) (4)

2 IQN [4] takes arbitrary τ ∼ U([0, 1]), and
outputs the corresponding quantile value.

3 FQF [5] learns a separate network to propose τ
taking state as input.

4 NDQFN [6] uses piece-wise linear function.

Learning Quantile Function with Monotonic Splines

Limitations of the existing methods: 1) a precise approximation for quntile function may need infinite τ s
if use discretization (QR-DQN, NC-QR-DQN, IQN, FQF) 2) quantile crossing problem (QR-DQN, IQN,
FQF) 3) piece-wise linear function has limited approximation ability (NDQFN).

Monotonic Splines

Monotonic splines produce a monotonic interpolant
to a set of monotonic data points (called knots). The
monotonicity of this kind of splines naturally fits the
non-decreasing property of the quantile function.
Monotonic Rational Quadratic Splines
Suppose we learn splines for K bins. Neural net
gives knots {(xk, yk)}Kk=0, and derivatives {dk}Kk=0.
x0 < ... < xk < ... < xK. x0 = 0, xK = 1
y0 < ... < yk < ... < yK. dk is positive.
Denote gk = (yk+1 − yk)/(xk+1 − xk) and hk(x) =
(x− xk)/(xk+1 − xk) for x ∈ [xk, xk+1]. Use hk for
short of hk(x), we have two quadratic functions
Ok(hk) = gkyk+1h

2
k + (ykdk+1 + yk+1)hk(1− hk)

+ gkyk(1− hk)2

Pk(hk) = gk + (dk+1 + dk − 2gk)hk(1− hk)
(5)

fk(hk) = Ok(hk)
Pk(hk)

(6)

fk(hk) = yk + (yk+1 − yk)[gkh2
k + dkhk(1− hk)]

gk + (dk+1 + dk − 2gk)hk(1− hk)
(7)

Learned Quantile Function

•xk: sigmoid + cumulative sum
• yk: sigmoid + rescale (multiply α then plus β)
•dk: softplus

Stochastic Environment Most previous distri-
butional RL algorithms were evaluated with deter-
ministic Atari games. It is problematic since the
resulting value distributions tend to be simple and
close to deterministic.
Windy Gridworld Some columns are affected by
some wind. A reward of −1 is earned at each step.
Have probability 0.1 of moving in a random direction
without wind effect, otherwise the wind pushes the
agent northward.

Figure 2: Learned quantile in stochastic Windy Gridworld

Stochastic PyBulletGym

Add noise ε ∼ N (0, σ) both the location and veloc-
ity of each part of the robot. Combine distributional
RL with DDPG and SAC. Check results details in
our paper.

Figure 3: Performance in stochastic PyBulletGym
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