Deep Soccer Analytics: Learning An Action-value
Function For Evaluating Soccer Players

Guiliang Liu Yudong Luo  Oliver Schulte Tarak Kharrat

i 4 i ECML

i g
oy sl | N it
‘:‘ésaé‘s‘s‘: w PKDD
GHENT. BELGIUM |4—|8£§EF€' 2020

L&4 UNIVERSITY OF

tJ LIVERPOOL

SIMON FRASER
SFU UNIVERSITY



Learning an Action-Value Q Function for soccer player evaluation:

Modeling game dynamics with Markov Game (s,a,r).
Use Deep Reinforcement Learning (DRL) Sarsa to compute action-value Q function.
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Compute a Goal Impact Metric (GIM).

Rank player and evaluate their performance.

Examine the model with a Multi-League play-by-play dataset.
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Why Deep Reinforcement Learning (DRL):

Previous Model-based methods [1,2,3]: Our Sarsa DRL model:

« EXxplicitly construct a Markov Model. .

« Model building and function learning are .
iIndependent.

» Infeasible for large dataset. .

* Requires discretizing the
continuous features.

* Huge state numbers (e.g., 10
features each with 10 dimension
indicates 1010 states).

« Complex transitions.

Model-Free RL ( no pre-built models).

An end-to-end model (no data pre-
processing, no intermediate model).

Generalize to large dataset (mini-batch
gradient descent fits dataset with any size).

O

] '
! Case 2: away team

i

! controls the ball, fit : LST‘M

Case 1: home team |

[1] Routley, Kurt, and Oliver Schulte. "A Markov Game model for valuing player actions in ice hockey." Proceedings of the Thirty-First Conference on Uncertainty in Artificial Intelligence. 2015.
[2] Schulte, Oliver, et al. "A Markov Game model for valuing actions, locations, and team performance in ice hockey." Data Mining and Knowledge Discovery 31.6 (2017): 1735-1757.
[3] Cervone D, D’Amour A, Bornn L, Goldsberry K (2016) A multiresolution stochastic process model for predicting basketball possession outcomes. J Am Stat Assoc 111(514):585-599

Deep Soccer Analytics ECML-PKDD 2020



Preliminary Result

Visualizing the Q functions learned by DRL:

Temporal Projection :Q
« Q values for a game between Fulham o)
(Home) and Sheffield Wednesday (Away), 3
which has happened on Aug. 19th, 2017. 7

* Q functions represents the probability of
home/away team score the next goal or 0.0

Home executes a

through-ball play
opponent’s goal.

0 1000 2000

nobody score.

S patl al P rOJ eCt| on Spatial Generalization for Q(tackle, s)

* Q functions for actions: shots and tackles.

* Q function (learned by DRL) generalizes
from observed states and actions to those
that have not occurred.
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THANK YOU!




Dataset and Preprocessing

A play-by-play soccer dataset for sports analytic

« Records the actions of on-the-ball players and the spatial and the temporal context features.
« Multiple leagues, multiple teams and players.

Name Type Range Dataset F24
Game Time Remaining Continuous [0, 100] Events 4,679,354
X Coordinate of ball Continuous [0, 100] Players 3,510
Y Coordinate of ball Continuous [0, 100] Games 2,976
Manpower Situation Discrete [-3, 5] Teams 164
(Goal Differential Discrete (00, +00) Leagues 10
Action Discrete one-hot representation Season 2017-18
Action Outcome Discrete {success, failure} Place Europe
Velocity of ball Continuous (-00, +00)
- Event Duration Continuous [0, +oc) Table 3 Dataset statis-
tracking Angle between ball and goal | Continuous [—m, +7] tics. The basic unit of this
: Home or Away Team Discrete {Home, Away } dataset is event, which de-

v \“

scribes the game context
[ Observation x; J -------- { Pass a; J Table 2: Complete feature list. For the feature manpower situation, negative and the on-the-ball action
values indicate short-handed, positive values indicate power play. of a player at a time step.
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Dataset and Preprocessing

The dataset utilizes adjusted spatial coordinates

« Both the X-coordinates and Y-coordinates are adjusted to [0, +100].
* We reverse the coordinates when the team in possession attacks towards the left
« The play flows from left to right for each team on the adjusted soccer pitch.

MP=Manpower, GD=Goal Difference, OC = Outcome, S=Succeed,
F=Fail, H=Home, A=Away, T=Team who performs action, GTR = Game Time Remain, ED = Event Duration

GTR | X | Y | MP | GD | Action | OC | Velocity | ED | Angle | T | Reward
35mé4s | 87 26 | Even 1 simple pass S (2.2,1.7) 1.0 | 019 | H | [0,0,0]
35m42s | 90 17 | Even 1 standard shot F (1.5, 4.5) 2.0 0.11 H | [0,0,0]
35m42s | 99 44 | Even 1 save S (0,0) 0.0 0.06 A | [0,00]
35m9s 100 1 Even 1 Cross S (0.0,-1.3) 33.0 0.0 H | [0.0,0]
35m7s 85 56 Even 1 simple pass S (-7.3, 27.6) 2.0 0.39 H [0,0,0]
35m5s 92 67 | Even 1 simple pass S (3.6,5.4) 2.0 028 | H | [0,0,0]
35mds 97 50 | Even 1 corner shot S (3.1,-16.2) 1.0 1.74 H | [0,0,0]
35mds 100 | 50 | Even 1 goal S (0,0) 0.0 0.0 H | [1,0,0]
3mdls 62 96 | Even 2 long ball F (4.5,9.3) 9.0 0.08 A | [0,0,0]
3m39s 19 89 | Even 2 clearance S (-21.5,-32) | 20 0.07 H | [0.0,0]
3m35s 24 100 | Even 2 throw in S (1.3.2.7) 4.0 0.09 A | [0,0,0]
3m33s 27 96 Even 2 simple pass S (1.1,-2.2) 2.0 0.1 A [0,0,0]
3m31s 12 95 | Even 2 Cross S (-7.5,-0.5) 2.0 0.07 A | [0,00]
3m28s 6 46 | Even 2 simple pass S | (-1.7,-163) | 3.0 079 | A | [0,00]
3m26s 14 48 | Even 2 standard shot S (3.8, 1.3) 2.0 0.44 A | [0,0,0]
3m26s 0 50 | Even 2 goal S (0,0) 0.0 0.0 A | [0.1,0]

Table 1: A data sample featuring team scoring: a sequence of events where home team scores and then
away team scores. The rewards [1,0,0] and [0,1,0] indicate the scoring event of home team and away team
respectively (see Section 4.1). We skip some events in the middle due to space issues.
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Dataset and Preprocessing

The dataset utilizes adjusted spatial coordinates

« Both the X-coordinates and Y-coordinates are adjusted to [0, +100].
* We reverse the coordinates when the team in possession attacks towards the left

The play flows from left to right for each team on the adjusted soccer pitch.

MP=Manpower, GD=Goal Difference, OC = Outcome, S=Succeed,

. . . A GTR | X | Y | MP | GD | Action | OC | Velocity | ED | Angle | T | Reward
Spatlal Genera||zat|0n for Q (ShOt’ S) 35mé4s | 87 26 | Even 1 simple pass S (2.2, 1.7) 1.0 | 019 | H | [0,0,0]
0. 660 35m4d2s | 90 17 | Even 1 standard shot | F (1.5,-4.5) 2.0 0.11 H | [0,0,0]

35m42s | 99 44 | Even 1 save ) 0.0 0.0 006 | A | [0,00]

35m9s | 100 1 Even 1 cross S (0.0,-1.3) 33.0 0.0 H | [0.00]

O 620 35m7s 85 56 Even 1 simple pass S (-7.3, 27.6) 2.0 0.39 H [0,0,0]

. 35m5s 92 67 | Even 1 simple pass S (3.6,5.4) 2.0 028 | H | [0,0,0]

35mds 97 50 | Even 1 corner shot S (5.1,-16.2) 1.0 1.74 H | [0,0,0]

35mds | 100 [ 50 | Even 1 goal ) 0,03 0.0 0.0 H | [1.00]

> O 580 3mdls 62 96 | Even 2 long ball F (4.5,9.3) 9.0 008 | A | [0,00]
3m39s 19 89 | Even 2 clearance S | (-21.5,-32) | 20 007 | H | [0,0,0]

0 540 3m35s 24 | 100 | Even 2 throw in S (1.3,2.7) 4.0 0.09 | A | [0,00]

. 3m33s 27 96 Even 2 simple pass S (1.1,-2.2) 2.0 0.1 A [0,0,0]

3m31s 12 95 | Even 2 Cross ) (-7.5.-0.5) 20 007 | A | [0,00]

3m28s 6 46 | Even 2 simple pass S (-1.7,-16.3) | 3.0 079 | A | [0,0,0]

0.520 3m26s | 14 | 48 | Even | 2 | standardshot | S (38,13) | 20 | 044 | A | [0,00]

3m26s 0 50 | Even 2 goal ) 0.0 0.0 0.0 A | [0.1,0]

F=Fail, H=Home, A=Away, T=Team who performs action, GTR = Game Time Remain, ED = Event Duration

Table 1: A data sample featuring team scoring: a sequence of events where home team scores and then
away team scores. The rewards [1,0,0] and [0,1,0] indicate the scoring event of home team and away team
respectively (see Section 4.1). We skip some events in the middle due to space issues.
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Play Dynamic in Soccer

A Markov model for soccer games.

« Two agents: Home and Away

« An action a; (one-hot representation) denotes the movements of players who control the ball.
 An observation is a feature vector x; specifying values of the features.

« A game state records the complete sequence s; 2 (x¢, Qr_1, X¢—1, - Xg)-

« The reward r; is a vector of goal values g; that specifies which team (Home, Away) scores.

An action-value Q function.

« Divide a soccer game into goal-scoring episodes. 1) starts at the beginning of the game, or
Immediately after a goal, and 2) terminates with a goal or at the end of the game.

 The next-goal Q-function represents the probability that the home resp. away team scores the
goal at the end of the current goal-scoring episode.

Qt@am(sva) == P(goa’lteam = Ilst — S, 4t = a’)
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Model Structure

Two-Tower Dynamic Play LSTM (TTDP-LSTM)

. Q values
- Three output nodes at each time an .
Step: Qhome; Qaway, and Qend- T:aonr:'llec;fg\r\;\;ﬁi);r Look ahead t(? th.v nc\t.gn:ll

Hidden Layers ]

« Two towers: fits home and away data _
separately. o A
. . rf [ Home Embedding layer J‘\ :, [ Away Embedding layer ] ! \
« Dynamic possession-LSTM: 1) apply | 4 1 SR | A
. Case1.hometeam } gty ,  Case2: awayteam i (srm . ‘
a dynamic trace length. 2) trace back =i aH HO (si?ﬂig‘i'?o‘l‘ivii'iaﬂieri{CE"] ] i -
to the beginning of a possession. ‘.\ ﬁ}:j /E (e W =
_ i i S N R e Tt S
« Temporal Difference (TD) Loss: e e A o o Co M D
E(G) = Z E I:(rIeam,f-l-l + Qream (SI'-I-IB af—l—]) - Qream(Sra af))z] Aw;;iﬂay Home play A“Ig;jpmy Home play

teameT

« Training settings:
1) Stacked (a tow layer) LSTM
2) Minibatch training.
3) max trace length is 10.
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Model Validation: Q Values

lllustration of Temporal and Spatial Projection: In spotlight

Calibration Quality for the learned Q-function:

« Evaluate how well our learned Q values fits

the Observed Scorlng frequenCIeS. Man. Goal. P | |A| . | TT_Home "IT_Away | TT_MAE Markov_MAE

ES -1 1 73176 0.4374 0.4159 0.0052 0.1879

I I . ES -1 2 | 96408 0.3496 0.3025 0.0782 0.1783

* DISCI‘etlzed g ame context: ES 0 1 | 356597 0.4437 0.4272 0.026 0.1908

ES 0 2 | 160080 0.356 0.3077 0.0814 0.1792

1) Manpower (Short Handed (SH), Even ES 1 1| 88726 | 04402 04128 | 0.0335 0.1899

Strength (ES)’ Power Play (PP)) ES 1 2 | 119901 0.3459 0.295 0.077 0.1787

PP -1 1 876 0.4366 0.4045 0.1752 0.1937

2) Goal Differential (2_3, _2, _1’ O’ 1’ 2’ > 3) PP -1 2 3319 0.352 0.2911 0.0668 0.1685

PP 0 1 3183 0.4414 0.403 0.1308 0.187

i i PP 0 2 7183 0.3579 0.2855 0.0841 0.1804

3) Period (1 (fIrSt half)’ 2 (Second half)) PP 1 1 1316 0.4391 0.3949 0.115 0.1825

. PP 1 2 7676 0.356 0.2862 0.1121 0.1792

« Measures (how close they are): ’
s : HHT Table 4: Calibration Results. TT_Home and TT_Away report the average scoring probability Q teqam (A) esti-
1) Em plrlcal Scori ng Probabilities mated by our TTDP-LSTM model. Here we compare only Q values for pass and shot as they an;E frequent and
??ebcfm ( A) _ |_j[| ZSEA go al gebtfm ( 8) well-studied actions. TT_MAE is the Mean Absolute Error (MAE) between estimated scoring probabilities

from our model and empirical scoring probabilities. For comparison, we also report a Markov_MAE which
applies the estimates from a discrete-state Markov model [Schulte et al., 2017b].

2) Estimated Scoring Probabilities
Qteam(A) = ﬁ ZSEA Qteam(sa a)
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Player Evaluation Metric

Goal Impact Metric (GIM):

« Compute the impact of an action by
the difference in expected total reward before and after the action.

« GIM calculates the total impact of a player’s action:

Qnhome | impacthome
: team Y A T T t .8 »0.4
impact (s,a,5,0) = Qteam(s,a ) —Eg 4/|Qteam (s, a’)|s, a
. .
GIM'(D) = Z nls,a,s’,a’,pl’ = i; D] - impact™®™ (s, a,s’, a’) t-1 0. l/—O.Z
35.{],,3’?{1’ t'2 O(

Q Value Above Average Replacement (QAAR):

« Proposition: For each player i recorded inour play-by-play dataset D,
QAAR! (D) = GIM' (D):
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Mimic Decision Tree

Understanding Impact Values with Mimic Decision Tree:

« Target: Understand why some actions have large impacts under certain game contexts.
* Method: Mimic Decision Tree.

1) Feed states and actions into a CART to fit the impact values via supervised learning.

2) Compute the feature importance with the learned tree.
« Some results (Top 10 important features for shot and pass):

Feature Influence Feature Influence p————y pm——

X distance (t) 0.6632 X Velocity (t) 0.1335 | Impact: LOSE-2 Impact; -5,006-4

outcome (t) 0.2275 Distance to Goal(t) 0.1264
Y distance (1) 0.0469 Game Time Remain (t-1) 0.1082 ¥ Coordinate(t-1)<79.15; ¥ Distance (t)}<48.15; [T'Irne Remain[t-llﬁﬂ-ﬁ;J [Dutcnmett-lhcl: ]

Game Time Remain (t) 0.0242 Game Time Remain (t) 0.0816 l Impact: -2.276-2 } Impact: 8.78E-2 J Impact; 4.38€-3 Impact: 8.77-2
duration (t) 0.0062 Qutcome (t) 0.0773
X CDOI'dl]'I ate l:t_ ]} Gmsg Dutcome {t' ” Dl}? 60 M elocity (t) Distanceto ¥ Distance (1) Game Time ¥ Distance (t-1) Distance to Cristance to ¥ Velocity
Game Time Remain (1) 0.0035 Disuance o Goa 1) 00411 [ "33 [y | P ot | | P8R0 | ottty [ etie | Bl
iI]tE]'l'llp[E-d ([) 0.0035 A]’Iglﬂ l:t) 0.0373 _Impact:-1.34E- mpact: -3.37E- mpact: 3.64E-1 J| Impact:-1.65E-2 i 1-2.18E- i1 : 4.81E- mpact: -4.62E-
g(u::;ﬁi:ta (; ]} g%?g X igﬁs]fig_{lt} 1 gg?gj Fig. 6: Regression tree for the impact of shot. Fig. 7: Regression tree for the impact of pass.
Table 5: Feature influence for the impact of shot. Table 6: Feature influence for the impact of pass.

Some findings:
« Shot impact significantly increases as a player approaches the goal.
« Passing impact increases with game velocity.
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Player Ranking: Case Study

Fine-Tuning:
 Motivation: Different leagues have their competition level, season length, and playoff agenda.

 Approaches: (EFL Championship games)
1) Train a general model to evaluate actions in European soccer.
2) Fine-tune the weight values from the general model to a league specific model.

All-Actions Assessment: Action-Specific Assessment:
RN oo o Asests « Top shot players « Top passing players
L e g : : i name GIM  Goal name GIM  Assist
eon Clarke Sheffield United 17.785 19 3 e 27 < T = 05 z
Lewis Grabban Sunderland 16.045 12 0 L dteJClydkrd jO:t 4 ‘l‘é Me (?I'C\}drdri 5 9 5‘7 ;‘
o 2 . 5 eon Clarke 024 atej Vydrz 5.95

g‘?bby e Eli) ke B g Lewis Grabban 3775 12 Bobby De Cordova-Reid 5134 7

iogo José Teixeira da Silva ~ Wolverhampton 15.707 17 5 K : Rvan S 3657 s Chris Wood 173 :

i ; 52 5 5 ouassi Ryan Sessegnon ~ 3.65 B "hris Woo 132
’II;?CI:: g:lli::z?’ro f?\lljcl):]vlelrhampton 114.9749 9 12 Harry Wilson 3.135 7 Gary Hooper 4.694 3
Stafan Tolitnsen Fulfsm 13.565 8 8 Famara Diedhiou 3.015 13 Ivan Cavaleiro 4.533 12
] R ,- op ey Sean Maguire 2.5 10 Diogo José Teixeira da Silva ~ 4.283 5
ames Maddison Norwich 13:23 14 8 =Ny 544 10 Ga S Msidie 4200 5
Gy Hoopex Setield Welnendy 10955 0 3 Jarroc; Bowen 2-.'408 14 Tor?CaErney 4.1-2; g
Callum Paterson 2.29 10 Conor Hourihane 4.042 2
: : 2017-2018 seas -10 Pl : cores for players in EFL Championship gz season.
Table 7: 2017-2018 season top-10 Player Impact Scores for players in 1ampIONsTip game season Table 8: Top-10 players with largest shot impact Table 9: Top-10 players with largest pass impact
in 2017-2018 EFL Championship game season. in 2017-2018 EFL Championship game season.
* Matej Vydra tops our 2017-2018 season «  Top shot players lead the goal scoring.
ranking. « Top passing players may not have leading assists.
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Player Ranking: Empirical Evaluation

Comparison Player Evaluation Metrics:

 Goal-based Metrics :
1) Plus- Minus (PM): measures how much the presence of a player influences the goals of his team.
2) Expected Goal (XG): weights each shot by its chance of leading to a goal.
« All-Action Metrics:
1) Valuing Actions by Estimating Probabilities (VAEP) applies the difference of action values to compute
the impact of on-the-ball actions.
2) Scoring Impact (Sl): based on a Markov model with pre-discretized spatial and temporal features.
3) M-GIM: merges our home/away towers and fits all the states and actions with a single-layer network.

Correlations with Standard Success Measures (all players) :

Methods Goals Assists  SpG PS%  KeyP Yel Red « GIM achieves promising correlation with

PM 0284 0318 0.199 0288 0218 | 0.001 -0.069 most SUCCess measures.
VAEP 0093 0290 021 0111 0116 | 0024 0133 . oy model correctly recognizes that a
XG 0422  0.173 0328 0164 0278 | 0534  0.034 . - ¢

SI 058  0.153 0438 -0.140 0052 | 0.114 -0.089 penalty reduces the scoring probability,
M-GIM 0648 0367 0573 0153 0417 | -0.110  -0.145 influencing the overall player GIM.

GIM 0.844 0.498  0.596 0.16 0.562 | -0.181 -0.137
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Player Ranking: Empirical Evaluation

Correlations with Standard Success Measures ( EFL Championship players) :

Methods  Goals  Assists  SpG PSY% KeyP Yel Red
PM 0.262  0.223  0.122 0.155 0.112 | 0.033 -0.046
VAEP 0.08 0.26 0.116 -0.126  0.137 | -0.015  0.215

« Championship League players’

XG 0420 0.165 0394 0.149 0254 | 0578 -0.021 correlations generally decrease.
SI 0574  0.124 0408 -0.144 0.054 | 0.084  -0.147 - itis more severe for our GIM metric.
M-GIM 0629 0309 0551 0171 0388 | -0.039 -0.132 *  Fine-tuning (FT-GIM) addresses this
GIM 0638 0382 0553 -0053 0468 | -0.026 -0.105 issUe.

FI-GIM  0.736 0.585 0.569 0.082 0592 | -0.110 -0.171

Round-by-Round Correlations: Predicting Future From Past Performance :

« All players * Players in the EFL Champion leagues
0.5 A e oo® 0.7] )
o 0.8 FYe i L 4 P
] P o v 0% H.’..‘ (LI "t"m**‘
i 04 o 3 " 4 A A ? 0o guas /AR
g "_"“““““‘ 206 ) 7.“1“A1t‘7 20.4 ',. P, g O 51 »;;’:‘ .
03 s S ] I E o8 o K
£ A z P 2 P o oy b hhaaahd 3 04/ K
c o4 i 2 « + GIM £ 7 +- GIM
502 o & 502 o S S 0 0.3 £
= £ 7 AT 4 GIM B / +- GIM = - EG = ; EG
01 P &~ M-GIM o2 B 4~ M-GIM Dol & MGIM goz) | 4 MGIM
S ~— sl 38 / <~ Sl S A <— Sl So1! | sI
Y007 & EG / EG = e FT-GIM o FT-GIM
0.0 0.0
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
Round Round Round Round
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Conclusion

Key takeaways :

 Q function from Sarsa Temporal Difference (TD) Learning:
1. Neural function approximator fits well with the high dimensional Spatial-temporal data.
2. TD method provides a promising player evaluation.

« Domain knowledge:
1. Home/away team behaves differently.
2. Players in different soccer league should be evaluated separately.
3. Action impact correlates well with standard success measures (e.g., goal, shot, etc.,)
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THANK YOU!




