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Learning an Action-Value Q Function for soccer player evaluation:

• Modeling game dynamics with Markov Game (s,a,r).

• Use Deep Reinforcement Learning (DRL) Sarsa to compute action-value Q function.

• Compute a Goal Impact Metric (GIM).

• Rank player and evaluate their performance.

• Examine the model with a Multi-League play-by-play dataset.

Overview
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Why Deep Reinforcement Learning (DRL):

Motivation

Previous Model-based methods [1,2,3]:

• Explicitly construct a Markov Model.

• Model building and function learning are

independent.

• Infeasible for large dataset.

[1] Routley, Kurt, and Oliver Schulte. "A Markov Game model for valuing player actions in ice hockey." Proceedings of the Thirty-First Conference on Uncertainty in Artificial Intelligence. 2015.

[2] Schulte, Oliver, et al. "A Markov Game model for valuing actions, locations, and team performance in ice hockey." Data Mining and Knowledge Discovery 31.6 (2017): 1735-1757.

[3] Cervone D, D’Amour A, Bornn L, Goldsberry K (2016) A multiresolution stochastic process model for predicting basketball possession outcomes. J Am Stat Assoc 111(514):585–599

• Requires discretizing the

continuous features.

• Huge state numbers (e.g., 10

features each with 10 dimension

indicates 1010 states).

• Complex transitions.

Our Sarsa DRL model:

• Model-Free RL ( no pre-built models).

• An end-to-end model (no data pre-

processing, no intermediate model).

• Generalize to large dataset (mini-batch

gradient descent fits dataset with any size).
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Visualizing the Q functions learned by DRL:

Preliminary Result

Temporal Projection

• Q values for a game between Fulham 

(Home) and Sheffield Wednesday (Away), 

which has happened on Aug. 19th, 2017.

• Q functions represents the probability of

home/away team score the next goal or

nobody score.

Spatial Projection

• Q functions for actions: shots and tackles.

• Q function (learned by DRL) generalizes

from observed states and actions to those 

that have not occurred.
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THANK YOU!

Q&A



A play-by-play soccer dataset for sports analytic

Dataset and Preprocessing

• Records the actions of on-the-ball players and the spatial and the temporal context features. 

• Multiple leagues, multiple teams and players.
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The dataset utilizes adjusted spatial coordinates

Dataset and Preprocessing

• Both the X-coordinates and Y-coordinates are adjusted to [0, +100]. 

• We reverse the coordinates when the team in possession attacks towards the left

• The play flows from left to right for each team on the adjusted soccer pitch.
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A Markov model for soccer games.

Play Dynamic in Soccer

• Two agents: Home and Away 

• An action 𝑎𝑡 (one-hot representation) denotes the movements of players who control the ball. 

• An observation is a feature vector 𝑥𝑡 specifying values of the features.

• A game state records the complete sequence 𝑠𝑡 ≜ 𝑥𝑡, 𝑎𝑡−1, 𝑥𝑡−1, … , 𝑥0 .

• The reward 𝑟𝑡 is a vector of goal values 𝑔𝑡 that specifies which team (Home, Away) scores.

An action-value Q function.

• Divide a soccer game into goal-scoring episodes. 1) starts at the beginning of the game, or 

immediately after a goal, and 2) terminates with a goal or at the end of the game.

• The next-goal Q-function represents the probability that the home resp. away team scores the 

goal at the end of the current goal-scoring episode. 
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Two-Tower Dynamic Play LSTM (TTDP-LSTM)

Model Structure

• Three output nodes at each time

step: 𝑄ℎ𝑜𝑚𝑒, 𝑄𝑎𝑤𝑎𝑦, and 𝑄𝑒𝑛𝑑.

• Two towers: fits home and away data 

separately.

• Dynamic possession-LSTM: 1) apply

a dynamic trace length. 2) trace back

to the beginning of a possession.

• Temporal Difference (TD) Loss:

• Training settings:

1) Stacked (a tow layer) LSTM

2) Minibatch training.

3) max trace length is 10.
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Illustration of Temporal and Spatial Projection:

Model Validation: Q Values

In spotlight

Calibration Quality for the learned Q-function:
• Evaluate how well our learned Q values fits 

the observed scoring frequencies.

• Discretized game context:

1) Manpower (Short Handed (SH), Even 

Strength (ES), Power Play (PP)).

2) Goal Differential (≥-3, -2, -1, 0, 1, 2, ≥ 3).

3) Period (1 (first half), 2 (second half)).

• Measures (how close they are):

1) Empirical Scoring Probabilities

2) Estimated Scoring Probabilities
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Goal Impact Metric (GIM):

Player Evaluation Metric

• Compute the impact of an action by 
the difference in expected total reward before and after the action.

• GIM calculates the total impact of a player’s action:

Q Value Above Average Replacement (QAAR):

• Proposition: For each player i recorded inour play-by-play dataset D,

𝑸𝑨𝑨𝑹𝒊 (𝑫) = 𝑮𝑰𝑴𝒊 (𝑫):

𝑄ℎ𝑜𝑚𝑒

t 0.8 0.4

t-1 0.4 -0.2

t-2 0.6

𝑖𝑚𝑝𝑎𝑐𝑡ℎ𝑜𝑚𝑒
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Understanding Impact Values with Mimic Decision Tree:

Mimic Decision Tree

• Target: Understand why some actions have large impacts under certain game contexts.
• Method: Mimic Decision Tree.

1) Feed states and actions into a CART to fit the impact values via supervised learning.

2) Compute the feature importance with the learned tree.

• Some results (Top 10 important features for shot and pass):

Some findings:

• Shot impact significantly increases as a player approaches the goal.

• Passing impact increases with game velocity.
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Fine-Tuning:

Player Ranking: Case Study

• Motivation: Different leagues have their competition level, season length, and playoff agenda.

• Approaches: (EFL Championship games)
1) Train a general model to evaluate actions in European soccer.

2) Fine-tune the weight values from the general model to a league specific model.

Action-Specific Assessment:

• Matej Vydra tops our 2017-2018 season 

ranking.

All-Actions Assessment:
• Top shot players • Top passing players

• Top shot players lead the goal scoring.

• Top passing players may not have leading assists.

Deep Soccer Analytics ECML-PKDD 2020



Comparison Player Evaluation Metrics:

Player Ranking: Empirical Evaluation

• Goal-based Metrics :
1) Plus- Minus (PM): measures how much the presence of a player influences the goals of his team.

2) Expected Goal (XG): weights each shot by its chance of leading to a goal.

• All-Action Metrics：
1) Valuing Actions by Estimating Probabilities (VAEP) applies the difference of action values to compute 

the impact of on-the-ball actions.

2) Scoring Impact (SI)： based on a Markov model with pre-discretized spatial and temporal features.

3) M-GIM: merges our home/away towers and fits all the states and actions with a single-layer network.

Correlations with Standard Success Measures (all players) :

• GIM achieves promising correlation with

most success measures.

• Our model correctly recognizes that a 

penalty reduces the scoring probability, 

influencing the overall player GIM.
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Player Ranking: Empirical Evaluation

Correlations with Standard Success Measures ( EFL Championship players) :

• Championship League players’ 

correlations generally decrease.

• it is more severe for our GIM metric.

• Fine-tuning (FT-GIM) addresses this 

issue.

Round-by-Round Correlations: Predicting Future From Past Performance :
• All players • Players in the EFL Champion leagues
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Key takeaways :

Conclusion

• Q function from Sarsa Temporal Difference (TD) Learning:

1. Neural function approximator fits well with the high dimensional Spatial-temporal data.

2. TD method provides a promising player evaluation.

• Domain knowledge:

1. Home/away team behaves differently.

2. Players in different soccer league should be evaluated separately.

3. Action impact correlates well with standard success measures (e.g., goal, shot, etc.,)
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