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Abstract
Given the large pitch, numerous players, limited player turnovers, and sparse scoring,
soccer is arguably the most challenging to analyze of all the major team sports. In
this work, we develop a new approach to evaluating all types of soccer actions from
play-by-play event data. Our approach utilizes a Deep Reinforcement Learning (DRL)
model to learn an action-value Q-function. To our knowledge, this is the first action-
value function based on DRL methods for a comprehensive set of soccer actions. Our
neural architecture fits continuous game context signals and sequential features within
a play with two stacked LSTM towers, one for the home team and one for the away
team separately. To validate the model performance, we illustrate both temporal and
spatial projections of the learned Q-function, and conduct a calibration experiment
to study the data fit under different game contexts. Our novel soccer Goal Impact
Metric (GIM) applies values from the learnedQ-function, tomeasure a player’s overall
performance by the aggregate impact values of his actions over all the games in a
season. To interpret the impact values, a mimic regression tree is built to find the
game features that influence the values most. As an application of our GIMmetric, we
conduct a case study to rank players in the English Football League Championship.
Empirical evaluation indicates GIM is a temporally stable metric, and its correlations
with standard measures of soccer success are higher than that computed with other
state-of-the-art soccer metrics.

Responsible editor: Ira Assent, Carlotta Domeniconi, Aristides Gionis, Eyke Hüllermeier.

Electronic supplementary material The online version of this article (https://doi.org/10.1007/s10618-
020-00705-9) contains supplementary material, which is available to authorized users.

B Yudong Luo
yudong_luo@sfu.ca

1 School of Computing Science, Simon Fraser University, and Sportlogiq Predictive Analytics,
Burnaby, BC, Canada

2 Management School, University of Liverpool, Liverpool, UK

123



G. Liu et al.

Keywords Deep reinforcement learning · Action-value Q-function · Goal impact
metric · Fine-tuning · Player ranking

1 Introduction: valuing actions and players

A major task of sports statistics is player evaluation, which provides insight into the
performance of a player (Schumaker et al. 2010). Performance evaluation is important
for teammanagement and fan engagement. For instance, fantasy leagues allow fans to
draft or build their favourite team, based on the skills and the performance of players.

With the arrival of high-frequency tracking systems and object detection algorithms,
ever more data on the movement of players in professional sports have become avail-
able. There is an increasing opportunity for large-scale machine learning to model
complex sports dynamics and evaluate players’ performances. Many evaluation met-
rics have been proposed in recent years. The most common approach has been to
evaluate players via quantifying the values of the actions they took (McHale et al.
2012; Decroos et al. 2019).

Traditional sports evaluation metrics face two major problems: (1) Many player
evaluation metrics (e.g., expected goals) focus only on the actions with immediate
impact on goals, such as shots, but omit other actions that have significant long-term
effects. This limitation is more severe when scoring is sparser; for example, soccer
games are very likely to end with zero or one goal. (2) Traditional methods tend to
assign fixed values to actions, regardless of the playing circumstances. To tackle these
issues, Routley and Schulte (2015) built a Markov model to capture the game context
for ice hockey and calculated a Q-value for each action. The Q-values estimate, for
each action, the probability that a team scores the next goal after the action, given the
current game context.

Soccer is arguably the most challenging to analyze of all the major team
sports (Bornn et al. 2018). The game context of soccer is even more complicated
than that of ice hockey, given that soccer has more players (22 players), larger pitch
(350 feet long and 150 feet wide) and longer playing time (90 min), all which lead to
complex spatio-temporal distribution patterns for each team. In this paper, we apply
Deep Reinforcement Learning (DRL) to learn an action-value Q-function from events
in a soccer game. We introduce a stacked two-tower LSTM to capture the playing
dynamics for home and away teams separately. Unlike the traditional control problem
in reinforcement learning aiming to learn the optimal policy, we solve the prediction
problem in the passive learning (on policy) setting.

Based on the learned Q-function, we introduce two metrics to measure the per-
formance of players and theoretically justify their consistency. First, the Goal Impact
Metric (GIM) ranks a player by aggregating the impacts of all his actions, where the
impact of an action is the change of consecutive Q values due to this action. In empiri-
cal comparison with four comparison metrics, GIM shows the highest correlation with
most standard success measurements. Generalizing from an initial sample of season
matches, GIM is the best predictor of season total goals and assists. Second, an alterna-
tive to the action value approach is to compare a player to a random or league-average
player (e.g., Cervone et al. 2014). This compares the expected success (e.g. the number
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of team wins) between the situations where the player is fielded and the situation if
the player is replaced by a random or average player. We adopt this idea to introduce
a new approach for play-by-play data that defines a natural Q-value-above-average-
replacement metric for player performance measurement. Our main theorem states
that a player’s Q-value-above-average-replacement gives the same score as their total
action impact value. This means that the DRL framework unifies the two fundamental
approaches to player evaluation; the plausibility of the average replacement approach
supports our total action value metric (GIM).

To compute the action values for all players, we build a large dataset consisting of
over 4.5 M action events by pooling data from several soccer leagues. This dataset
allows the model to learn general estimates for actions values. However, as the game
context within a specific leaguemay differ from that of the general soccer game, player
assessment should be adjusted for different leagues. To address the trade-off between
generalizing across leagues and specializing to a specific one, we propose a fine-tuning
approach: beginning with the general model as an initialization, then train the model
on the specific data from a certain league. Given the English Football League (EFL)
Championship data, we use fine-tuning to improve the model’s fitting performance as
well as the evaluation results for players in this league.
Contribution The main contributions of this paper can be summarized as follows.

1. The first neural Markov gamemodel for soccer play-by-play event data.We utilize
deep reinforcement learning to estimate a context-aware Q-function.

2. A novel two-tower neural network architecture to capture the spatio-temporal
complexity of the home and away teams separately in a soccer game.

3. A fine-tuning approach that learns a general action value model from a very large
dataset that combines different leagues, while capturing statistical patterns for
specific leagues. While versions of fine-tuning have been applied in computer
vision image datasets, to our knowledge, fine-tuning is new in deep sports analytics.

4. Two new soccer performancemetrics based on the Q-function:Goal ImpactMetric
and Q-value-above-average-replacement (QAAR). To the best of our knowledge,
QAAR is the first replacement-basedmetric for soccer play-by-play data.We prove
that they are numerically identical, unifying the two fundamental approaches to
player evaluation in an RL framework.

2 Related work

2.1 Evaluating soccer players

The handbook by Albert et al. (2017) provides several up-to-date survey articles on
player evaluation.

+/– (Plus–Minus) is a commonly applied player evaluation metric using goals only.
It qualifies the influence of a player’s presence on the goal scoring opportunity for his
team. The basic version awards a player +1 if a goal is scored by the player’s own team
when the player is on the pitch, and -1 if the other team scores. Some recent works
modify the basic plus-minus metric, by weighting the goals according to their impor-
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tance, based on expected win probability, game time and game frequency (Schultze
and Wellbrock 2018), or with machine learning and survival models to estimate both
expected goals and expected points to assess a player’s overall defensive and offensive
influence (Kharrat et al. 2019).

Expected Goals (XG) uses shot information to quantify the value of a shot by the
probability of a goal given shot features (e.g. angle to goal). Players are ranked by their
total expected goals (Ali 2011). Many recent works have applied a similar method to
study passes rather than shots, where the quality of a player’s passes is quantified by
their influence on expected scoring opportunities. Passing is one of the most frequent
actions in soccer. For each pass, Brooks et al. (2016)measured its value as the estimated
probability of resulting in a successful shot. Bransen and Van Haaren (2018) measured
its value as the difference between the goal-scoring probability before and after the
pass. A drawback of these ratings is that they evaluate only one type of action without
modeling a player’s overall performance.

Several recent works rate players by evaluating all their actions. The Expected
Possession Value (EPV) (Cervone et al. 2016) evaluated all the actions in basketball
within a possession by estimating the expected number of points from the possession.
Following this framework, Fernández et al. (2019) built a deep model from the full
resolution spatiotemporal data to compute theEPVs for all actions during a game. They
study the action impacts of individual soccer players under different game situations.
Their approach requires tracking data, which assume the complete observability of
all players. Many other play-by-play datasets, including ours, provide only partial
observability of game context: they record only actions of the players who possess
the ball at a given time. For on-ball action data, Decroos et al. (2019) introduced the
VAEP (Valuing Actions by Estimating Probabilities) framework that evaluates all on-
ball actions of soccer players based on their influence on the game outcome. However,
instead of explicitly representing the game environment, their model considers a set
of hand-crafted action features from the recent game history, and whether an action
will lead to a goal within a constant number of future steps.

Another approach to evaluatingplayers is quantifying their value-above-replacement
(VAR). Themost commonVARs includeGoals/Wins Above Replacement (GAR/WAR)
whichmeasure the player’s contribution to his or her team by estimating the difference
of team’s scoring/winning chances when the target player is on the field, vs. compared
to a replacement-level player. In this paper we take the replacement-level player to
be a statistical league-average or random player. In other works, replacement-level
represents a player of common skills available for minimum cost to a team.

2.2 Reinforcement learning in sport analytics

ReinforcementLearning (RL)models event data of the form s0, a0, r1, s1, a1, . . . , st , at ,
rt+1, st+1, at+1: environment state st occurs, an action at is chosen, resulting in a
reward rt+1 and state st+1. At the next time step, another action at+1 is chosen. The
data are often separated into local transitions of the form T {s, a, r ′, s′, a′}. Rein-
forcement Learning has been applied to evaluating the actions of players. Schulte
et al. (2017a) applied an ice hockey play-by-play dataset to build a Markov model,
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Fig. 1 A tree diagram to position our work in the research landscape. An important factor is whether a
metric considers all actions or only a subset of them. Our approaches assign a value to all on-the-ball
actions. Methods in bold are evaluated in our experiments and the star marks the proposed metrics

where actions record the player movements and states capture the game context. They
measured players performance by their expected Scoring Impact (SI). The expected
scoring probabilities of player actions under different game context are modeled by
a Q-function using dynamic programming (Puterman and Patrick 2017) based on the
Bellman equation:

Q(s, a) = Es′,a′ [r ′ + Q(s′, a′)|s, a] (1)

=
∑

r ′
Pr(r ′|s, a)r ′ +

∑

s′,a′
Pr(s′, a′|s, a)Q(s′, a′) (2)

This recurrence allows us to estimate the Q value at a current context s, a given an
estimate for the next Q values and transition probabilities Pr. Schulte et al. (2017a)
discretized location and time coordinates, and used maximum likelihood estimates for
the resulting discrete transition probabilities. The XThreat model is a discrete Markov
model for soccer that divides the pitch into 192 zones and uses the Bellman equation to
assess the expected scoring changes and resulting impact values (Van Roy et al. 2017).
TheXThreatmodel considers only twoaction types, passes anddribbles.Discretization
leads to loss of information and undesirable spatial-temporal discontinuities in the Q-
function. The discontinuities prohibit the model from generalizing to the unobserved
part of the state space.

Instead of explicitly modeling transitions in a discrete MDP, our work employs
a model-free approach which learns Q values without explicitly estimating transi-
tion and reward probabilities (Sutton and Barto 2018). Many previous model-free RL
works (Mnih et al. 2015) appliedmodel-free learningwith deep neural networks to cap-
ture continuous action and state features. These works mainly focused on controlling
in continuous-flow games (e.g., Atari games). However, the real agents—players—in
professional sports games are subject to evaluation, but not subject to control by an
RL method.

Dick and Brefeld (2019) applied model-free RL to value match states in soccer
according to the chance that the team currently in position will bring the ball close to
the other team’s goal. They assume tracking data (specifying the location and ball at
each time step), rather than event data as our model does. Also, they did not apply the
learned value function to assess player performance. To evaluate players performance,
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Liu and Schulte (2018) applied a deep recurrent model to capture the features of game
history in ice hockey. Their model computes Q values to measure a player’s expected
probability of scoring the next goalwith theSarsa temporal difference learningmethod.
Our work extends the approach of Liu and Schulte (2018) from ice hockey to a more
complex model designed for the more complex sport of European soccer. We show
can the resulting impact values can be interpreted through mimic learning and provide
a theoretical justification for the learned impact values.

3 Dataset

Sports analytics uses several different formats of data: box score data, which provide
total action counts per player and match (e.g., number of goals scored), play-by-play
data, which are logs of discrete action events specifying various properties of the
action (e.g. action type, acting player, time and location), and tracking data, which
record the location of each player at dense time intervals (e.g. for every broadcast
video frame, or more frequently with stadium cameras). In this paper, we utilize the
F24 play-by-play soccer game dataset provided by Opta.1. The dataset records the
play-by-play information of game events and player actions for the entire 2017-2018
game season from multiple soccer leagues, including English Premier League, Dutch
Eredivisie, EFL Championship, Italian Serie A, German Bundesliga, Spanish La Liga,
French Ligue 1 and German Bundesliga Zwei. Table 3 shows dataset statistics. The
dataset records the actions of on-the-ball players and the spatial and the temporal
context features. The complete feature set is listed in Table 2. Table 1 lists a series of
events describing a goal sequence for the home and away teams. The dataset utilizes
adjusted spatial coordinates. Both the X-coordinates and Y-coordinates are adjusted
to [0,+ 100]. The adjusted soccer pitch is shown in Fig. 2, where play flows from
left to right for either team. To adjust coordinates, we reverse them when the team
in possession attacks towards the left, so in this case XAd justed = −rescale(X) and
YAd justed = −rescale(Y). The adjusted coordinates accelerate model convergence
during training and improve the model fit for spatial features (Sect. 6.1).

4 Modeling play dynamics

This section introduces our approach to defining a Markov model for soccer games
and a Q-function to evaluate actions of players under different game context.

4.1 Markov gamemodel for sports game

Similar to (Liu and Schulte 2018), we apply the Markov Game Framework to model
the play dynamics for sports games. The basic building blocks of the model are:

– There are two agents, Home and Away, representing their respective teams.

1 https://www.optasports.com/
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Fig. 2 Soccer pitch layout with adjusted coordinates. Coordinates are adjusted so that for the home/away
team performing an action, its offensive zone is on the right

Table 2 Complete feature list

Name Type Range

Game time remaining Continuous [0, 100]

X coordinate of ball Continuous [0, 100]

Y coordinate of ball Continuous [0, 100]

Manpower situation Discrete [−5, 5]

Goal differential Discrete (−∞,+∞)

Action Discrete one-hot representation

Action outcome Discrete {success, failure}

Velocity of ball Continuous (−∞, +∞)

Event duration Continuous [0,+ ∞)

Angle between ball and goal Continuous [−π, +π ]

Home or away team Discrete {Home, Away}

For the feature manpower situation, negative values indicate short-handed, positive values indicate power
play

– The action at denotes the movements of players who control the ball. Our model
applies a discrete action vector using one-hot representation.

– An observation is a feature vector xt specifying a value of the features listed
in Table 2 at a discrete time step t . We use the complete sequence st ≡
(xt , at−1, xt−1, . . . , x0) to represent the state (Mnih et al. 2015).

– The reward rt is a vector of goal values gt that specifieswhich team (Home,Away)
scores.We introduce an extraNeither indicator for the eventuality that neither team
scores until the end of a game. For readability, we use Home,Away,Neither to
denote the team in a 1-of-3 vector of goal values rt = [gt,Home, gt,Away, gt,Neither]
and gt,Home = 1 indicates the home team scores at time t (see Table 1).

4.2 The next-goal Q-function

Several value functions have been used to evaluate player actions. One option is to
measure actions by whether they increase the winning chances (Routley 2015). More
recent works focus on an action’s more immediate impact regarding scoring points or
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Table 3 Dataset statistics Dataset F24

Events 4,679,354

Players 5510

Games 2976

Teams 164

Leagues 10

Season 2017–2018

Place Europe

The basic unit of this dataset is event, which describes the game context
and the on-the-ball action of a player at a time step

goals (Cervone et al. 2016; Schulte et al. 2017b). For soccer, we formalize this idea
in terms of the next-goal Q function, which is defined as follows.

We divide a soccer game into goal-scoring episodes, so that each episode 1) starts
at the beginning of the game, or immediately after a goal, and 2) terminates with a
goal or at the end of the game. The next-goal Q-function represents the probability
that the home resp. away team scores the goal at the end of the current goal-scoring
episode (goalHome = 1 resp. goalAway = 1), or neither team scores (goalNeither = 1):

Qteam(s, a) = P(goalteam = 1|st = s, at = a) (3)

where team is a placeholder for one ofHome,Away,Neither. This Q-function rep-
resents the probability that a team scores the next goal, given current play dynamics in
a sports game (Schulte et al. 2017a; Routley and Schulte 2015). For player evaluation,
the next-goal Q-function has several advantages over win probabilities.

– Compared to final match outcome, the Q values model the probability of scoring
the next goal that is a relatively short time away and thus easier to explain and
understand.

– Increasing the probability that a player’s team scores the next goal captures
both offensive and defensive value. For example, a defensive action like tack-
ling decreases the probability that the other team will score the next goal, thereby
increasing the probability that the player’s own team will score the next goal.

– The next-goal reward captures what a coach expects from a player. For example,
instead of thinking about how the game will end, a coach prefers his players to
focus on defending against their opponent’s strike and creating the next scoring
opportunities at the moment.

5 Learning Q values: model architecture and training

This section introduces a neural network architecture and the weight training methods
to learn a Q-function (Qteam(s, a)).
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Fig. 3 The architecture of our two-tower dynamic play LSTM (TTDP-LSTM). The figure shows how the
model processes two generic time instances, one associated with home team, is analyzed by the home tower,
and the other from away team, is analyzed by the away tower

5.1 Model architecture: function approximation with neural network

We discuss the model architecture for learning the Q values. Given a discrete state
space, it is possible to use dynamic programming for computing Q-values (Schulte
et al. 2017b; Van Roy et al. 2017). But our soccer model contains continuous observa-
tion features derived from continuous time stamps and spatial locations. A common
solution is to discretize spatio-temporal indices (Gudmundsson and Horton 2017).
However, the resulting discontinuities undermine the precision of state values and
impugn predictive accuracy. In this paper, we develop a neural network approach that
can directly incorporate continuous observation features.

To generate Q-values, our model applies the two-tower design (Song et al. 2017) to
fit the data of home/away teams separately and a recurrent neural network to capture
the sequential features in play history. Figure 3 shows our model structure. The model
fits home and away data separately, because from domain knowledge we expect the
Q values to be different depending on whether a team plays at home or away (for
a discussion of the home team advantage see (Swartz and Arce 2014)). Each tower
captures the play history with a stacked LSTM, which is a multi-layer LSTM, where
outputs of LSTMcells in lower layers are used as the input for higher layers. Compared
to the single layer LSTM, stacking adds levels of abstraction for the input features
of sequences. This increases the model’s ability to generalize across complex game
contexts. The complete playhistory of gamecontexts and actions (st , at ) is summarized
in the last hidden state of the top LSTM layer. Our model uses a team identifier unit
to select the hidden state from the home or the away tower according to who controls
the ball in the current play. The selected hidden state values are sent to hidden layers
whose outputs are normalized by a softmax function and considered as our estimates
of Q̂Home(s, a), Q̂Away(s, a), and Q̂Neither(s, a).

123



Deep soccer analytics

5.2 Weight training

We train the two-tower neural network with an Temporal Difference (TD) prediction
method Sarsa (Sutton andBarto 2018, Ch.6.4) and apply a dynamic-possessionLSTM
to control the trace length during training. Our goal is to learn a function that estimates
Qteam(s, a) for the play dynamics observed in our dataset, with which we evaluate the
performance of players. The training details are as follows.
Home/away tower weight training

At training time step t , our model feeds the output from the home/away tower to the
hidden layers if the home/away team controls the ball at time t . During one training
step, the hidden layers estimate the Q values for two continuous actions and states
within one transition T {st , at , rt+1, st+1, at+1}. The estimated Q values are applied
to compute the TD loss:

L(θ) =
∑

team∈T
E

[
(rteam,t+1 + Q̂team(st+1, at+1) − Q̂team(st , at ))

2] (4)

We use mini-batch gradient descent with backpropagation to find weights of our
neural model that minimize this loss function (Fig. 3). As for each transition, an error
signal is sent only to either the home or the away tower, the flow of gradients will only
influence one of the two towers and thus their weights are updated independently. This
independence separates home and away signals and helps the network to learn their
impact.
Dynamic possession-LSTM Team sports like soccer have a turn-taking aspect where
one team is on the offensive and the other defends; one such turn is called a play. A play
ends when possession passes from the team at time t to the opposing team at time t+1
(Liu and Schulte 2018). In a sports game, events within a play are highly correlated,
but when a team loses control of the ball (meaning the play ends), the attacking
team switches to defense. The dependence between actions from successive plays is
therefore much weaker. The turn-taking aspect inspires a natural way of determining
the trace length tlt , which controls how far back in time the LSTMpropagates the error
signal from the current time at the input history. Instead of fixing the trace length, our
model dynamically computes it and sets tlt to the number of time steps from current
time t to the beginning of the current play (with a maximum of 10 steps), so that
the LSTM can restrict the history traces to the continuous possession of one team.
Using possession changes to define episodes for temporal models has been proven to
be successful in many continuous-flow sports, especially basketball (Cervone et al.
2016; Gudmundsson and Horton 2017).
Training settings For our TTDP-LSTM model in Fig. 3, both home and away towers
apply a two-layer LSTM,whose outputs are sent to two hidden layers with three output
nodes. The number of nodes in LSTM hidden states and hidden layers are both 256.
Themax trace length of LSTM is 10 (Hausknecht and Stone 2015). During training,we
minimize the loss function L(θ) with Adam optimizer with an initial general learning
rate of 10E-04 on the entire dataset (containing over 4.5M event data) and a fine-tuning
initial learning rate of 10E-05 on the league-specific datasets.
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Computational complexity Applying the neural network approximation function, the
Sarsa prediction algorithm learns the Q function by updating the weights of a neural
network through backpropagation. Our model applies a two-layer stacked LSTMwith
trace length 10 plus an embedding layer for each team and two hidden layers to
generate the Q values. The sizes of hidden layers (or state) for both dense layers and
LSTM cells are set to 256. Assuming we have m training examples in a batch and
the dimension of input space is n, the time complexity of finishing training a neural
network for one batch is thereforeO(mn). While the cost of each training step is linear
in the batch size, the number of gradient steps required until convergence depends on
the dataset and the hyperparameter settings and cannot be bounded a prior.

6 Model validation: Q values

Our case studies illustrate the learnedQ-functionwith temporal and spatial projections.
To validate the model performance, we show that the learned Q values are well-
calibrated, meaning that they offer a satisfactory fit to empirical scoring frequencies
observed under different game contexts.

6.1 Illustration of temporal and spatial projection

Temporal projectionWe illustrate the estimated Q values for actions and states across
game times. Fig. 4 shows a value ticker (Cervone et al. 2016) that represents the
evolution of the Q values during a randomly sampled game from our dataset. The
figure plots values of the three output nodes representing Q̂Home(s, a), Q̂Away(s, a),
and Q̂Neither(s, a), according to whichwe highlight critical events to show the context-
sensitivity of the Q-function. We observe that: (1) High scoring probabilities for one
team decrease those of its opponent. (2) The probability that neither team scores rises
significantly at the end of the match.
Spatial projection To study the influence of players’ positions on scoring probability,
we generate Q values for the entire soccer pitch. Our neural model can generalize
from observed states and actions to those that have not occurred in the observed
game season. Our model’s generalization ability allows us to estimate a Q value for
any action performed at any position. Fig. 5 shows the learned smooth Q-function
surface Q̂Home(s, a) over possible game trajectories for several actions of the home
team including shot, pass, cross, and tackle.We select these actions because they occur
frequently andhavebeen studied inpreviouswork (Brooks et al. 2016;VanHaaren et al.
2016). For the selected actions, we observe that the Q value of offensive actions like
shots, passes, and crosses increases with proximity to the opponent’s goal. The value
of defensive tackling increases with proximity to the team’s own goal. Angles from
the left side of the goal appear slightly more promising than from the right. The plots
for Q̂home(s, pass) and Q̂home(s, cross) show the same phenomena. An explanation
for the first observation is that players have more chance to score when they approach
their opponent’s goal. For the second observation related to shot angle, inspection of
our dataset reveals several goals scored on the upper corner (e.g. successful banana
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Fig. 4 Temporal Projection of the learned Q-function. The game is between Fulham (Home) and Sheffield
Wednesday (Away), which has happened on Aug. 19th, 2017

Fig. 5 Spatial Projections for estimated Q values: Q̂Home(s, shot), Q̂Home(s, pass), Q̂Home(s, cross) and
Q̂Home(s, tackle) over the entire soccer pitch. We use the adjusted coordinate described in Sect. 3

kick) but none on the lower corner. The left/right asymmetry also explains why the
defensive action tackle made near the bottom left corner is more valuable (the last
plot): tackles disturb opponents’ actions that might lead to successful shots on their
upper corner.

6.2 Calibration quality for the learned Q-function

The calibration studies evaluate how well our learned Q-function fits the observed
next-goal scoring frequencies under different game discrete contexts. Our approach
to defining discrete game contexts is to divide the continuous state space into discrete
bins. To calculate the empirical scoring frequency associated with each bin, we assign
an observed state to a bin according to the values of three discrete context features
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in the last observation: Manpower (Short Handed (SH), Even Strength (ES), Power
Play (PP)), Goal Differential (≤ −3,− 2,− 1, 0, 1, 2,≥ 3) and Period (1 (first half),
2 (second half)). The total number of bins is 3 × 7 × 2 = 42. This partition has
two advantages. (1) The context features are well-studied and important for soccer
experts (Decroos et al. 2019), so the model predictions can be checked against domain
knowledge. (2) The partition covers a wide range of match contexts, and each bin
aggregates a large set of play histories. If our model exhibits a systematic bias, the
aggregation should amplify it and the bias should become detectable.

Given the set of bins where each bin A contains a total of |A| states, the empirical
and estimated scoring probabilities for each bin are defined as follows:

– Empirical Scoring Probabilities: for each observed state s, we set goalobsteam(s) =
1 if the observed episode containing state s ends with a goal by team
team = Home,Away or neither (team = Neither). Then Qobs

team(A) =
1

|A|
∑

s∈A goal
obs
team(s)

– Estimated Scoring Probabilities: we apply our TTDP-LSTM model to estimate a
Q value for each observed sequence and average the resulting estimates to compute
the estimated scoring probabilities : Q̂team(A) = 1

|A|
∑

s∈A Q̂team(s, a)

We evaluate the fit as the difference between the average empirical scoring prob-
ability Qobs

team(A) and the average estimated scoring probability Q̂team(A). We show
the results in Table 4 where the context features Manpower (Man.), Goal Differential
(Goal.) and Period (P.) define a bin, and |A| records the number of actions in each bin
A in our dataset. The estimated Q-function matches several well-known phenomena:
1) The chance of either team scoring another goal decreases in the second period. 2) A
clear home team advantage (Swartz and Arce 2014): Comparing two match contexts
with the home and away team roles exchanged, the relative advantage of the home
team is greater than that of the away team. 3) Manpower advantage by the home team
means a lower scoring chance for the away team.

Our conclusions are as follows. (1) The model fit is satisfactory (i.e., the average
MAE for all bins is below 0.1), except for some relatively rare game contexts. (For
instance, the context where the home team is trailingwith amanpower advantage in the
first period,whose corresponding bin count is only 876 out of 3Mmatch states). (2)Our
model significantly outperforms the Markov Model with a discrete state space. This
shows the advantage of a function approximation model that can utilize continuous
space-time information without losing information due to discretization.

7 Player evaluationmetric based on Q values

In this section, we show how a player evaluation metric can be derived from the Q-
function. Our paper’s main approach to measuring player performance is assigning
impact values (the difference between two consecutive Q values) to a player’s action.
To understandwhen the neural networkwill assign a high value to a player action,wefit
a regression tree with the state-action features and the corresponding impact values.
To provide a theoretical foundation for our impact metric, this section introduces
another Q-value-Above-Replacement metric to evaluate a player’s action. By proving
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Table 4 Calibration results

Man. Goal. P. |A| TT_Home TT_Away TT_MAE Markov_MAE

ES −1 1 73,176 0.4374 0.4159 0.0052 0.1879

ES −1 2 96,408 0.3496 0.3025 0.0782 0.1783

ES 0 1 356,597 0.4437 0.4272 0.026 0.1908

ES 0 2 160,080 0.356 0.3077 0.0814 0.1792

ES 1 1 88,726 0.4402 0.4128 0.0335 0.1899

ES 1 2 119,901 0.3459 0.295 0.077 0.1787

PP −1 1 876 0.4366 0.4045 0.1752 0.1937

PP −1 2 3319 0.352 0.2911 0.0668 0.1685

PP 0 1 3183 0.4414 0.403 0.1308 0.187

PP 0 2 7183 0.3579 0.2855 0.0841 0.1804

PP 1 1 1316 0.4391 0.3949 0.115 0.1825

PP 1 2 7676 0.356 0.2862 0.1121 0.1792

TT_Home and TT_Away report the average scoring probability Q̂team(A) estimated by our TTDP-LSTM
model. Here we compare only Q values for pass and shot as they are frequent and well-studied actions.
TT_MAE is the Mean Absolute Error (MAE) between estimated scoring probabilities from our model and
empirical scoring probabilities. For comparison, we also report aMarkov_MAEwhich applies the estimates
from a discrete-state Markov model (Schulte et al. 2017b)

both metrics are equivalent, we show that Q-values unify the two main approaches to
player evaluation.

7.1 Goal impact: deriving action values fromQ-values

Our Q-function concept provides a novel AI-based definition for assigning a value to
an action. Similar to Schulte et al. (2017b); Routley and Schulte (2015), we measure
the quality of an action by howmuch it changes the expected total reward of a player’s
team: the difference in expected total reward before and after the player acts. The
scoring chance at a time measures the value of a state, and therefore depends on the
previous efforts of the entire team, whereas the change in value directly measures the
impact of an action by a specific player. For our specific choice of Next Goal as the
reward function, we refer to goal impact. The total impact of a player’s actions is his
Goal Impact Metric (GIM) value.

The following equations show how the action impact can be computed for a tran-
sition T {s, a, r ′, s′, a′} given Q value estimates from our TTDP-LSTM model. The
expected future total reward before s′, a′ is given by r ′+Es′,a′ [Qteam(s′, a′)|s, a] (here
the expectation is taken over all possible successor states and actions). The expected
future total reward after s′, a′ is given by r ′ + Qteam(s′, a′). Therefore:

impactteam(s, a, s′, a′) ≡ Qteam(s′, a′) − Es′,a′ [Qteam(s′, a′)|s, a]
GIMi (D) ≡

∑

s,a,s′,a′
n[s, a, s′, a′, pl′ = i; D] · impactteam(s, a, s′, a′) (5)
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where D indicates our dataset, teami denotes the team of player i , and

n[s, a, s′, a′, pl′ = i; D]

is the number of occurrences that player i performs action a′ at s′ after s, a. The
Bellman equation (1) implies thatEs′,a′ [Qteam(s′, a′)|s, a] = Qteam(s, a)−E[r ′|s, a].
The expectation can therefore be computed from estimated Q values given an expected
rewardsmodel. In our data, scoring a goal is represented as a separate action goal, after
which no transition occurs. This means that for every transition T {s, a, r ′, s′, a′}, we
have a �= goal, r ′ = 0 and thus E[r ′|s, a] = 0. So in this representation, the impact
equation (5) reduces to the difference in Q values before and after the player acts.

7.2 Understanding impact values withmimic decision tree

The impact values are computedwith theQ-function, which applies a black-box neural
network to fit the state-action features. To understand why some actions have large
impacts under certain game contexts, we apply Mimic Learning (Ba and Caruana
2014) and train a transparent regression tree (CART) to mimic the behavior of the
deep model.

This interpretability study consists of twomain steps. (1)We feed states and actions
of the players as input into a CART to fit the resulting impact values via supervised
learning. At each splitting node, CART automatically selects the feature that con-
tributes the largest variance reduction to impact values on the child nodes. We split
until one of the child nodes contains fewer than 80/90 samples for shot/pass respec-
tively. (2) After tree learning, we compute the importance of a feature by summing
the variance reductions at the splits applying this feature (Liu et al. 2018).

We rank the state and action features by their importance values. Tables 5 and 6
show the top 10 important features for shot and pass. Figures 6 and 7 illustrate the
structure of the CART trees by plotting its top three layers. The trees for both shot
and pass impacts place at the root action outcome (a binary feature marking success
or failure of an action), which intuitively is one of the most important action features.
We also find that the shot impact significantly increases as a player approaches the
goal, which is consistent with our finding in the spatial projection for Q values. For
passing, its impact increases with game velocity. An explanation is that a quick pass
prevents potential interruptions from opponents. When the game is close to the end,
we observe that although the average passing impact decreases, the variance of impact
among different passes significantly increases. Our CART in Fig. 7 accurately locates
the time when this phenomenon starts to occur (Time Remain (t − 1) < 39.45).
Another important observation is that in addition to features from current time t , the
historical features (e.g. X Coordinate (t − 1)) are also considered as important for
predicting the impact of the current action.

123



Deep soccer analytics

Table 5 Feature influence for
the impact of shot

Feature Influence

X distance (t) 0.6632

Outcome (t) 0.2275

Y distance (t) 0.0469

Game time remain (t) 0.0242

Duration (t) 0.0062

X coordinate (t − 1) 0.0059

Game time remain (t − 1) 0.0035

Interrupted (t) 0.0035

X velocity (t) 0.0030

Outcome (t − 1) 0.0019

Table 6 Feature influence for
the impact of pass

Feature Influence

X velocity (t) 0.1355

Distance to goal (t) 0.1264

Game time remain (t − 1) 0.1082

Game time remain (t) 0.0816

Outcome (t) 0.0773

Outcome (t − 1) 0.0760

Distance to goal (t − 1) 0.0411

Angle (t) 0.0373

Angle (t − 1) 0.0298

X velocity (t − 1) 0.0174

Fig. 6 Regression tree for the impact of shot

7.3 Q value above average replacement

Wecompare the goal impactmetric to deriving a playermetric from a Q-function using
an above-average-replacement framework. The fact that the same player performance
ranking can be derived using two fundamentally different approaches supports the
conceptual foundations of our metric.
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Fig. 7 Regression tree for the impact of pass

The QAAR metric, compares the expected total future reward given that player i
acts next, to the expected total future reward given that a random replacement player
acts next:

QAARi (D) ≡
∑

s,a

n[s, a, pl′ = i; D]
(
Es′,a′ [Qteam(s′, a′|s, a, pl′ = i)]−

Es′,a′ [Qteam(s′, a′)|s, a]
)

(6)

where n[s, a, pl′ = i; D] is the occurrence number that player i performs an action
after s, a. The QAAR metric can be computed for a dataset by using the maximum
likelihood estimates of transition probabilities. QAAR andGIM are natural definitions
for the value-above-replacement and action-value approaches, respectively. Our main
result is that they are equivalent:

Proposition 1 For each player i recorded in our play-by-play dataset D, his Q-value-
above-replacement is equal to his goal impact metric: QAARi (D) = GIMi (D).

The complete proof is in our “Appendix”. This equation indicates that by summing a
player’s impact over an entire game season (GIM), we measure how much his general
playing skill exceeds that of an average player (a replacement player with average
Q-value) in the same league. Thus the same method for ranking players can be derived
from a Q-function using two fundamentally different approaches. In the next section,
we show some ranking examples by applying GIM to rate players.

8 Player ranking: case study

To illustrate GIM, we discuss the ranking results for several players. We rank the EFL
Championship players by their GIMs over the entire 2017-2018 game season. Our case
study only ranks players in one league because they face the same level of competition
and therefore their contributions are comparable. We chose the EFL Championship,
which is just below the Premier League in the league hierarchy, because it has a large
number of players in our data set and it has been much less studied than the Premier
League.
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Fine-tuning Different leagues have their own characteristics including competition
level, season length, and playoff agenda. Therefore we apply a fine-tuning technique
in order to achieve a better adaptation to the EFL Championship games.

1. Train a general model to evaluate actions in European soccer using games from
multiple European Soccer leagues.

2. Fine-tune the initial weight values from the general model, with a smaller learning
rate and using only EFL Championship game data.

Fine-tuning refines the general model and improves its ability to capture the
behaviour of players. Compared to training the model from scratch, fine-tuning signif-
icantly reduces training time and prevents over-fitting. In the following assessment, we
describe GIM values computed with the fine-tuned model and present both a general
ranking for all actions and action-specific rankings.

8.1 All-actions assessment

Table 7 lists the 10 players with highest GIM for all actions. Our ranking includes
the players with the most goals and assists. We investigate the positive correlation
between our metric and standard success measures further in the next section.

Matej Vydra tops our 2017–2018 season ranking. He dominated the scoring board
of the England Championship league and won the 2017–2018 Golden Boot award2. In
the next season (2018–2019), the Premier League team Burnley recognized the talent
of Vydra and signed him on a three-year deal from team Derby.

Another example is Tom Cairney, who has only 5 goals and 5 assists over the
entire season but ranks 6th in GIM assessment. Although he does not lead by any
standard success statistics (Goals, Assists), his impact was an indispensable factor of
his team’s success in winning the 2017–2018 EFL playoffs. For example, he scored
the only goal of the final in which Fulham beat Aston Villa by 1-0 in the Wembley
stadium and earned promotion to the Premier league. Tom Cairney was nominated as
the EFL’s Championship Player of the Season award.3.

8.2 Action-specific assessment

An action-specific ranking evaluates only the impacts of action of interest.We compute
two GIM rankings of EFL Championship players by shots and passes respectively.
These are frequent actions in soccer with high impact. Table 8 and Table 9 list the top
10 players. GIM computed from shots only can be seen as an alternative to the popular
expected goals (XG) metric. A shot with high impact will significantly increase the
probability of scoring and thus top players in Table 8 also lead the goal scoring. For
instance, Matej Vydra is the player with the highest scoring impact and he also dom-
inated goal scoring during the 2017-18 game season. However, the relation between
pass impact and the number of assists is more complex. There is some association,
because assists are often high-valued passes. On the other hand, the number of assists

2 https://www.skysports.com/football/news/11688/11361634/
3 https://www.bbc.com/sport/football/43641225

123



G. Liu et al.

Table 7 2017–2018 season top-10 player impact scores for players in EFL championship game season

Name Team GIM Goals Assists

Matej Vydra Derby 18.017 21 4

Leon Clarke Sheffield United 17.785 19 5

Lewis Grabban Sunderland 16.045 12 0

Bobby De Cordova-Reid Bristol 15.976 19 7

Diogo José Teixeira da Silva Wolverhampton 15.707 17 5

Tom Cairney Fulham 15.24 5 5

Ivan Cavaleiro Wolverhampton 14.979 9 12

Stefan Johansen Fulham 13.565 8 8

James Maddison Norwich 13.23 14 8

Gary Hooper Sheffield Wednesday 11.953 10 3

Table 8 Top-10 players with
largest shot impact in 2017–2018
EFL championship game season

Name GIM Goal

Matej Vydra 4.747 21

Leon Clarke 4.024 19

Lewis Grabban 3.775 12

Kouassi Ryan Sessegnon 3.657 15

Harry Wilson 3.135 7

Famara Diedhiou 3.015 13

Sean Maguire 2.5 10

Joe Garner 2.44 10

Jarrod Bowen 2.408 14

Callum Paterson 2.29 10

Table 9 Top-10 players with
largest pass impact in
2017–2018 EFL Championship
game season

Name GIM Assist

Leon Clarke 8.05 5

Matej Vydra 5.957 4

Bobby De Cordova-Reid 5.134 7

Chris Wood 4.732 1

Gary Hooper 4.694 3

Ivan Cavaleiro 4.533 12

Diogo José Teixeira da Silva 4.283 5

Gary Madine 4.202 2

Tom Cairney 4.123 5

Conor Hourihane 4.042 2

123



Deep soccer analytics

is an incomplete measure of passing ability because it neglects midfield and defensive
zone passes. Our ranking, in contrast, provides a comprehensive evaluation to all the
passes of a player. For example, Conor Hourihane plays as Midfielder and managed
only 2 assists over the entire season. But he makes many influential passes and is
ranked as a top-10 passer by our metric.

9 Player ranking: empirical evaluation

We describe our comparison methods and evaluation methodology. Similar to clus-
tering and recommendation problems, there is no ground truth for player ranking. To
assess a player evaluationmetric, we follow previous work (Routley and Schulte 2015;
Liu and Schulte 2018) and compute its correlation with statistics that directly measure
success.

9.1 Comparison player evaluationmetrics

We compare GIM with baseline player evaluation metrics to show the advantage of
(1) modeling game context (2) incorporating continuous context signal and history (3)
separately handling home and away state action signals.

Our baseline player evaluation metrics are as follows.Goal-basedMetrics. (i) Plus-
Minus (PM) is a commonly studied metric that measures how much the presence of
a player influences the goals of his team (Macdonald 2011). (ii) Expected Goal (XG)
weights each shot by its chance of leading to a goal. Players are ranked by their total
expected goal shots. Both PM and XG consider only very limited game context and
action types. The next three baselines assign an impact value to all actions and evaluate
players according to their total action impact.

All-Action Metrics (iii) Valuing Actions by Estimating Probabilities (VAEP)
(Decroos et al. 2019) applies the difference of action values to compute the impact
of on-the-ball actions. Instead of applying Temporal Difference learning to estimate
Q values, VAEP uses a classifier4 to estimate the probability that an action leads to
a goal within the next k (window size) steps. (iv) Scoring Impact (SI) is based on a
Markov model with pre-discretized spatial and temporal features (e.g. x,y coordinate
and game time) (Schulte et al. 2017a). Dynamic programming is applied to estimate
a Q-function and impact values for the discrete state-action space. (v) DP-LSTM is a
neural network architecture that was previously applied to estimate action values for
ice hockey. It applies a recurrent model to capture game context and TD learning to
train the model (Liu and Schulte 2018). The difference with our TTDP-LSTM is that
it merges the home/away towers and fits all the states and actions with a single-layer
network. We refer to the resulting impact score as (M-GIM) for “merge”.

A league-specific study evaluates our Fine-Tuning GIM (FT-GIM) for players in
the EFL Championship. Training a separate model with only EFL Championship data
from scratch consumes more computational resources than fine-tuning the general

4 The classifier is implemented with a neural network rather than CatBoost in (Decroos et al. 2019) due to
the size of dataset. We discuss our VAEP implementation further in the limitations (Sect. 10.2).
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model. Our experiment records 4,386,894 gradient steps to learn a reliable model
from initial weights while fine-tuning requires only 818,120 gradient steps.

Significance test To assess whether GIM is significantly different from the other
player evaluation metrics, we perform paired t-tests over all players. The null hypoth-
esis is rejected with respective p-values: 9.33E-2, 5.27E-281, 8.03*E-218, 4.82E-14
and 1.02E-118 for PlusMinus, XG, SI, VAEP andM-GIM. This shows that GIMvalues
are different from the values of other metrics.

9.2 Season totals: correlations with standard success measures

We report the correlations between player rankingmetrics and commonly used success
measures over the entire 2017–2018 game season and highlight the comprehensiveness
of our GIM metric. The examined success measures include Goals, Assists, Shots per
Game (SpG), Pass Success percentage (PS%) and Key Passes per game (KeyP). We
also study two penalty measures: Yellow card received (Yel) and Red card received
(Red). Table 10 shows the correlations between the comparison methods and the
success/penalty measures, for the players in all 10 leagues. In addition to the general
study, Table 11 shows the result of a league-specific evaluation where we compare
only the correlations for players in the EFL Championship.

Our GIM achieves very good correlations compared to the other methods Among
the positive success measures, GIM has the highest correlation with 4 out of 5 suc-
cess measures (Goals, Assists, SPG, and KeyP) and a competitive result for the other
(PS%). Together, the Q-function basedmetrics GIM,M-GIM, and SI show the highest
correlations with success measures. XG is only the fourth best metric, because it con-
siders only the expected value of shots and does not correct for the team effort leading
up to the shot. VAEP achieves only limited correlation with the success measures. This
is because their model assigns similar expected values to all actions, which translates
into all action impact values being close to 0. The traditional Plus-Minus metric cor-
relates poorly with almost all success measures. We conclude that RL techniques that
provide fine-grained expected action value estimates lead to performance metrics that
better match traditional success statistics.

Comparing the different RL approaches, the neural network model allows GIM to
handle continuous inputs without pre-discretization. This prevents the loss of game
context information and explains why both GIM and M-GIM perform better than SI
in most success measures. The higher correlation of GIM compared to M-GIM also
demonstrates the value of separatelymodeling home/away data. ForYel andRedwhich
reflect the number of received penalties—negative contributions by a player—only our
GIM-based metrics (GIM, M-GIM) show a negative correlation with both of them.
The model correctly recognizes that a penalty will significantly reduce the scoring
probability, influencing the overall player GIM. In contrast, other metrics focus on the
actions that are likely to lead to goals, which tends to reward aggressive players who
incur more penalties.

The league-specific study demonstrates the benefit of fine-tuning the deep rein-
forcement learning models. Compared to the correlations for players in all 10
leagues, Championship League players’ correlations generally decrease. Both tra-
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Table 10 Correlation with standard success measures for all the players

Methods Goals Assists SpG PS% KeyP Yel Red

PM 0.284 0.318 0.199 0.288 0.218 0.001 −0.069

VAEP 0.093 0.290 0.121 −0.111 0.116 0.024 0.133

XG 0.422 0.173 0.328 0.164 0.278 0.534 0.034

SI 0.585 0.153 0.438 −0.140 0.052 0.114 −0.089

M-GIM 0.648 0.367 0.573 0.153 0.417 −0.110 −0.145

GIM 0.844 0.498 0.596 0.16 0.562 -0.181 −0.137

We bold the highest correlations and underline the lowest ones for penalties

Table 11 Correlation with standard success measures for players in the EFL championship

Methods Goals Assists SpG PS% KeyP Yel Red

PM 0.262 0.223 0.122 0.155 0.112 0.033 −0.046

VAEP 0.08 0.26 0.116 −0.126 0.137 −0.015 0.215

XG 0.420 0.165 0.394 0.149 0.254 0.578 −0.021

SI 0.574 0.124 0.408 −0.144 0.054 0.084 −0.147

M-GIM 0.629 0.309 0.551 0.171 0.388 −0.039 −0.132

GIM 0.638 0.382 0.553 −0.053 0.468 −0.026 −0.105

FT-GIM 0.736 0.585 0.569 0.082 0.592 −0.110 −0.171

We bold the highest correlations and underline the lowest ones for penalties

ditional action-count metrics (PM, XG) and impact-based metrics (VAEP, SI, GIM,
M-GIM) show the decrease, but it is more severe for our GIM metric whose correla-
tions nearly drop 20% when the players in the Championship League are evaluated
by the general model. Fine-tuning addresses this issue: the FT-GIM metric achieves a
larger negative correlation with penalty counts (Yel and Red).

9.3 Round-by-round correlations: predicting future performance from past
performance

These results assesses the player performance metrics through round-by-round cor-
relations. A sports season can be divided into rounds. In round n, a team or player
has finished n games in a season. For a given performance metric, we measure the
correlation between (i) its value computed over the first n rounds, and (ii) the value of
the two main success measures, assists, and goals, computed over the entire season.
This allows us to assess how quickly different metrics acquire predictive power for the
final season total, so that future performance can be predicted from past performance.
A good performance metric should be consistent with a player’s overall performance
in the early season, which provides the player and his team with evidence for trading
or training.
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Fig. 8 Correlations between round-by-round metrics and season totals for all players

Fig. 9 Correlations between round-by-round metrics and season totals for the players in EFL Champion

Figure 8 shows the round-by-round correlations for the players in all 10 leagues.5

The predictive power of GIM grows more quickly than with any other baseline: its
correlation with both assists (left) and goals (right) dominates others before the first
half of the season. M-GIM achieves the second highest correlations, for assists even
higher than GIM in the first 5 rounds. However, its predictive power substantially
drops after the first 10 rounds. The remaining two metrics XG and SI show only weak
correlations with assists and goals.

The question for our next experiment is: does fine-tuning help predict a player’s
final total performance from the past performance? This experiment focuses on play-
ers in the EFL Championship. Figure 9 shows round-by-round correlations of the
performance metrics with EFL Championship players’ total assists and goals. We
make the following observations. (1) Compared to the all-player setting of Fig. 8,
the metrics’ correlations decline when restricted to EFL Championship players. This
decline is more apparent for our GIM metric. The reason is that the neural network
trained on the general player population does not fit the behaviour of players in the
EFL Championship as well. (2) Fine-tuning significantly improves the correlations
of GIM, especially for its correlation with assists, where the correlation of FT-GIM
exceeds that of other metrics after the first 10 rounds.

5 In Figs. 8 and 9 , we omit players from teams that play less than 40 games in the 2017–2018 season.
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10 Discussion

In this section, we discuss topics related to the sparsity of goals, model convergence
and limitations of our method.

10.1 The sparsity of goals

A common method to evaluate soccer players’ contribution is computing their influ-
ence on goal scoring. However, goals are rare in a soccer game. This issue is similar
to the sparse reward problem in Reinforcement Learning (RL). To address goal spar-
sity, many previous works on sport analytics suggested including other measures like
assists, passes, and penalties in player evaluation. This is similar to reward shaping in
RL, which adds some handcrafted indirect reward signals to accelerate training con-
vergence Ng et al. (1999). Reward shaping includes more information but raises the
difficult issue of how to weight the relative importance of the indirect rewards (e.g.,
passes) of the real target reward (scoring). The Temporal Difference solution learns a
Q-function that propagates the reward (scoring) signals to previous events, and assigns
a value to all actions on the same expected rewards scale.

10.2 Model convergence

We discuss the convergence of our TTDP-LSTM model. TTDP-LSTM is trained by
the on-policy Temporal Difference (TD) method Sarsa. Previous work has guaranteed
the convergence of on-policy TD with linear function approximators (Tsitsiklis and
Van Roy 1997). However, in this paper, we apply a non-linear neural network function
approximator. It is well-known that on-policy TD with a non-linear function approx-
imator often exhibits unstable convergence in the traditional RL setting, when the
action-value Q function is defined as the expected cumulative rewards with unlimited
look ahead:

Q(st , at ) = E[
∞∑

i=t

γ i−t · r(si , ai )].

Here α ∈ (0, 1) is the discount factor and r is the reward function. To alleviate
the instability of TD methods, in this work, we constrain the look-ahead to the next
goal (rather than the end of game) and remove the discount factor, so Q(st , at ) =
E[r(sT , tT )] which is the expected scoring probability of the next goal. This is valid
because, as discussed in Sect. 7.1, the reward r(st , tt ) = 0 except at goal occurrences
T .

10.3 Limitations

We show some limitations in this work and discuss some potential solutions. Par-
tial observability for the players on pitch At each time step, our dataset records only
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positions and actions of the player controlling the ball. The locations of the off-ball
players are not known. The information of other players however, has influence on
scoring probabilities, especially for a complex team sport like soccer. To alleviate
this issue, our TTDP-LSTM model applies a recurrent model to fit the play history
and includes the information of previous on-the-ball players. It has been previously
observed in reinforcement learning that incorporating action history compensates for
partial observability to some extent, because themodel can infer missing current infor-
mation from past information McCallum (1996); Hausknecht and Stone (2015). For
example, current player locations can be predicted to some extent from past player
locations. Nonetheless, the model performance is limited due to partial observability.
A direction for future work is to build a multi-agent reinforcement learning frame-
work that combines fully observable tracking data with event categories. A possible
approach is to combine the deep RL tracking model of Dick and Brefeld (2019) with
our event-based deep RL model. The problem of big input data Our dataset has over
4M events including spatial and temporal features of players. Fitting the entire data
requires substantial computational resources. The scalability challenges increasewhen
we include the play history. Therefore it is difficult to utilize standard machine learn-
ing packages (such as decision tree, random forest or gradient boosting) that typically
assume the entire data can be fit into a single working memory batch. In this work,
we build a neural network with mini-batch gradients. In future work, we will explore
on-line learningmethods and evaluate their performance on big sports data. In addition
to improving scalability, on-line methods are well-suited to sports data as teams want
to update player assessments after every round.

11 Conclusion

This paper investigated Deep Reinforcement Learning (DRL) to learn complex spatio-
temporal dynamics for professional soccer analytics. We designed a neural network
architecture that, to our best knowledge, is themost complex deployed in sports analyt-
ics to date: A stacked two-tower LSTM architecture, with one tower each for home and
away teams. The network was trained with on-ball action logs from several European
leagues, comprising a total of over 4.5M action events. The trained neural network
provides a rich source of knowledge about how a team’s chance of scoring the next
goal depends on the match context.

Based on the learned action values, we developed a new context-aware perfor-
mance metric GIM for soccer players, taking all their actions into account. In our
experiments, GIM computed over the entire season showed the highest correlation
with most standard success measures. Generalizing from a sample of season matches,
GIMwas the best predictor of season total goals and assists. To improve the evaluation
results for players in a specific league, we applied a fine-tuning approach to achieve
an effective balance between generalizing across leagues and specializing to a specific
league. Directions for future work include incorporating tracking data and developing
on-line deep RL methods.
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Deep RL methods have enjoyed spectacular success in board games. Our results
show that the analysis of physical team sports is another highly promising application
area.

Acknowledgements This work was supported by Strategic Project Grant from the National Sciences and
Engineering Council of Canada, and a GPU donation from NVIDIA Corporation. We are indebted for
helpful discussion and comments to Norm Ferns, Evin Keane, and Bahar Pourbabee from Sportlogiq.

A Proof of Proposition 1

The data record transitions from a state-action-player triple to another, possibly result-
ing in a non-zero reward (score or point in the context of sports).We denote the number
of times such a transition occurs as

nD[s, a, pl, s′, a′, pl′]

where the ′ indicates the successor triple. We freely use this notation for marginal
counts as well, for instance

nD[s′, a′, pl′] =
∑

s,a,pl

nD[s, a, pl, s′, a′, pl′]

From the paper,wehave the following equations for theQ-value-above-replacement
and the GIM metrics:

QAARi (D) =
∑

s,a

nD[s, a, pl′ = i](Es′,a′ [Qteam(s′, a′|s, a, pl′ = i)]

− Es′,a′ [Qteam(s′, a′)|s, a]) (7)

GIMi (D) =
∑

s,a,s′,a′
n[s, a, s′, a′, pl′ = i; D] ·

[
Qteam(s′, a′)

− Es′E ,a′
E
[Qteam(s′

E , a′
E )|s, a]

]
(8)

Now we have

GIMi (D)
Eq.2=

∑

s,a

∑

s′,a′
nD[s, a, s′, a′, pl′ = i]

(
Qteam(s′, a′) − Es′E ,a′

E
[Qteam(s′

E , a′
E )|s, a]

)

=
∑

s,a

nD[s, a, pl′ = i]
∑

s′,a′

nD[s, a, s′, a′, pl′ = i]
nD[s, a, pl′ = i] Qteam(s′, a′)

−
∑

s,a

nD[s, a, pl′ = i]Es′E ,a′
E
[Qteam(s′

E , a′
E )|s, a] (9)

=
∑

s,a

nD[s, a, pl′ = i]E[Qteam(s′, a′|s, a, pl′ = i)] (10)

−
∑

s,a

nD[s, a, pl′ = i]Es′E ,a′
E
[Qteam(s′

E , a′
E )|s, a]
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=
∑

s,a

nD[s, a, pl′ = i](Es′E ,a′
E
[Qteam(s′

E , a′
E |s, a, pl′ = i)]

− Es′E ,a′
E
[Qteam(s′

E , a′
E )|s, a])

Eq.1= QAARi (D) (11)

Step (9) holds because the expectation E[Qteam(s′, a′|s, a)] depends only on
s, a, not on s′, a′. Line (10) uses the empirical estimate of the expected Q-value
Qteam(s′, a′)] given that player i acts next, computed from the maximum likelihood
estimates of the transition probabilities:

σ̂ (s′, a′|s, a, pl′ = i) = nD[s, a, s′, a′, pl′ = i]
nD[s, a, pl′ = i]

The final conclusion (11) applies Equation (7).

References

Albert J, Glickman ME, Swartz TB, Koning RH (2017) Handbook of Statistical Methods and Analyses in
Sports. CRC Press, Boca Raton

Ali A (2011) Measuring soccer skill performance: a review. Scand J Med Scin Sports 21(2):170–183
Ba J, Caruana R (2014) Do deep nets really need to be deep? In: Advances in Neural Information Processing

Systems, pp 2654–2662
Bornn L, Cervone D, Fernandez J (2018) Soccer analytics: unravelling the complexity of “the beautiful

game”. Significance 15(3):26–29
Bransen L, Van Haaren J (2018) Measuring football players’ on-the-ball contributions from passes during

games. In: Machine Learning and Data Mining for Sports Analytics, Proceedings of the 5th Interna-
tional Workshop. Springer, pp 3–15

Brooks J, Kerr M, Guttag J (2016) Developing a data-driven player ranking in soccer using predictive
model weights. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. ACM, pp 49–55

Cervone D, D’Amour A, Bornn L, Goldsberry K (2014) Pointwise: predicting points and valuing decisions
in real time with NBA optical tracking data. In: Proceedings of the 8th Annual MIT Sloan Sports
Analytics Conference, vol 28

Cervone D, D’Amour A, Bornn L, Goldsberry K (2016) A multiresolution stochastic process model for
predicting basketball possession outcomes. J Am Stat Assoc 111(514):585–599

Decroos T, Bransen L, Haaren JV, Davis J (2019) Actions speak louder than goals: valuing player actions in
soccer. In: Proceedings of the 25th ACMSIGKDD International Conference on Knowledge Discovery
& Data Mining, KDD 2019, Anchorage, AK, USA, August 4–8, 2019, pp 1851–1861

Dick U, Brefeld U (2019) Learning to rate player positioning in soccer. Big Data 7(1):71–82
Fernández J, Barcelona F, Bornn L, Cervone D (2019) Decomposing the immeasurable sport: a deep

learning expected possession value framework for soccer. In: ProceedingsMIT Sloan Sports Analytics
Conference

Gudmundsson J, Horton M (2017) Spatio-Temporal Analysis of Team Sports. ACM Comput Surv
50(2):22:1–22:34. https://doi.org/10.1145/3054132

Hausknecht MJ, Stone P (2015) Deep recurrent Q-learning for partially observable MDPS. In: Proceedings
of the 2015AAAI Fall Symposia, Arlington, Virginia, USA,November 12–14, 2015, pp 29–37. CoRR.
arXiv:1507.06527

Kharrat T, McHale IG, Peña JL (2019) Plus-minus player ratings for soccer. Eur J Oper Res 283:726–736
Liu G, Schulte O (2018) Deep reinforcement learning in ice hockey for context-aware player evaluation. In:

Proceedings of the 27th International Joint Conference on Artificial Intelligence, IJCAI-18, ijcai.org,
pp 3442–3448

123



Deep soccer analytics

Liu G, ZhuW, Schulte O (2018) Interpreting deep sports analytics: Valuing actions and players in the NHL.
In: International workshop on machine learning and data mining for sports analytics. Springer, pp
69–81

Macdonald B (2011) A regression-based adjusted plus-minus statistic for NHL players. J Quant Anal Sports
7(3):29

McCallumA (1996) Learning to use selective attention and short-termmemory in sequential tasks. In: From
animals to animats 4: proceedings of the fourth international conference on simulation of adaptive
behavior, vol 4. MIT Press, p 315

McHale IG, Scarf PA, Folker DE (2012) On the development of a soccer player performance rating system
for the english premier league. Interfaces 42(4):339–351

Mnih V, Kavukcuoglu K, Silver D et al (2015) Human-level control through deep reinforcement learning.
Nature 518(7540):529–533

Ng AY, Harada D, Russell S (1999) Policy invariance under reward transformations: theory and application
to reward shaping. Proceedings of the 16th International Conference on Machine Learning (ICML
1999), Bled, Slovenia, pp. 278–287

Puterman ML, Patrick J (2017) Dynamic programming. In: Encyclopedia of machine learning and data
mining, pp 377–388

Routley K (2015) A markov game model for valuing player actions in ice hockey. Master’s thesis, Simon
Fraser University

RoutleyK, Schulte O (2015) Amarkov gamemodel for valuing player actions in ice hockey. In: Proceedings
of the International Conference on Uncertainty in Artificial Intelligence (UAI), pp 782–791

Schulte O, Khademi M, Gholami S, Zhao Z, Javan M, Desaulniers P (2017a) A markov game model
for valuing actions, locations, and team performance in ice hockey. Data Mining and Knowledge
Discovery, pp 1–23

Schulte O, Zhao Z, Javan M, Desaulniers P (2017b) Apples-to-apples: clustering and ranking NHL players
using location information and scoring impact. In: Proceedings MIT Sloan Sports Analytics Confer-
ence

Schultze SR,WellbrockCM (2018)Aweighted plus/minusmetric for individual soccer player performance.
J Sports Anal 4(2):121–131

Schumaker RP, Solieman OK, Chen H (2010) Research in sports statistics. Sports Data Mining, Integrated
Series in Information Systems, vol 26. Springer, US, pp 29–44

Song Y, Xu M, Zhang S, Huo L (2017) Generalization tower network: A novel deep neural network
architecture for multi-task learning. arXiv preprint arXiv:1710.10036

Sutton RS, Barto AG (2018) Reinforcement learning: an introduction. MIT Press, Cambridge
Swartz TB, Arce A (2014) New insights involving the home team advantage. Int J Sports Sci Coach

9(4):681–692
Tsitsiklis JN, Van Roy B (1997) Analysis of temporal-diffference learning with function approximation.

In: Advances in Neural Information Processing Systems, pp 1075–1081
Van Haaren J, Van den Broeck G, Meert W, Davis J (2016) Lifted generative learning of markov logic

networks. Mach Learn 103(1):27–55
Van Roy M, Robberechts P, Decroos T, Davis J (2017) Valuing on-the-ball actions in soccer: a critical

comparison of XT and VAEP. In: Workshop on Team Sports AAAI 2020

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


